Nihal Ozturk
Akdeniz University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nihal Ozturk.
Regulatory Toxicology and Pharmacology | 2010
Aysegul Cort; Nihal Ozturk; Deniz Akpinar; Mustafa Ünal; Gultekin Yucel; Akif Ciftcioglu; Piraye Yargicoglu; Mutay Aslan
The aim of this study was to clarify the possible protective effect of astaxanthin (ASX) on the retina in rats with elevated intraocular pressure (EIOP). Rats were randomly divided into two groups which received olive oil or 5mg/kg/day ASX for a period of 8 weeks. Elevated intraocular pressure was induced by unilaterally cauterizing three episcleral vessels and the unoperated eye served as control. At the end of the experimental period, neuroprotective effect of ASX was determined via electrophysiological measurements of visual evoked potentials (VEP) and rats were subsequently sacrificed to obtain enucleated globes which were divided into four groups including control, ASX treated, EIOP, EIOP+ASX treated. Retinoprotective properties of ASX were determined by evaluating retinal apoptosis, protein carbonyl levels and nitric oxide synthase-2 (NOS-2) expression. Latencies of all VEP components were significantly prolonged in EIOP and returned to control levels following ASX administration. When compared to controls, EIOP significantly increased retinal protein oxidation which returned to baseline levels in ASX treated EIOP group. NOS-2 expression determined by Western blot analysis and immunohistochemical staining was significantly greater in rats with EIOP compared to ASX and control groups. Retinal TUNEL staining showed apoptosis in all EIOP groups; however ASX treatment significantly decreased the percent of apoptotic cells when compared to non treated ocular hypertensive controls. The presented data confirm the role of oxidative injury in EIOP and highlight the protective effect of ASX in ocular hypertension.
Toxicology and Industrial Health | 2010
Sevim Ercan; Nihal Ozturk; Ciler Celik-Ozenci; Nazli Ece Gungor; Piraye Yargicoglu
Sodium metabisulfite (Na 2S2O5) is used as an antioxidant and antimicrobial agent in a variety of drugs and functions as a preservative in many food preparations. This study was performed to elucidate the dose-dependent effects of sodium metabisulfite ingestion on rat gastric tissue apoptotic changes and lipid peroxidation. Forty male wistar rats, aged 3 months were used. They were randomly divided into four groups: control (C), the group treated with Na2S2O5 (10 mg/kg; S1), the group treated with Na2S2O5 (100 mg/kg; S2), the group treated with Na2S2O5 (260 mg/kg; S3). Na 2S2O5 was given by intragastric intubation for 35 days. In the S2 and S3 groups, malondialdehyde (MDA) levels increased markedly when compared with the control group. High doses of sulfite administration elevated number of apoptotic cells both in mucosa and submucosa layers of stomach in parallel with increased MDA levels. These results suggest that sodium metabisulfite increased lipid peroxidation and thus number of apoptotic cells on gastric tissue in dose-dependent manner.
World Journal of Diabetes | 2013
Nihal Ozturk; Yusuf Olgar; Semir Ozdemir
There is a growing body of evidence that Diabetes Mellitus leads to a specific cardiomyopathy apart from vascular disease and bring about high morbidity and mortality throughout the world. Recent clinical and experimental studies have extensively demonstrated that this cardiomyopathy causes impaired cardiac performance manifested by early diastolic and late systolic dysfunction. This impaired cardiac performance most probably have emerged upon the expression and activity of regulatory proteins such as Na(+)/Ca(2+) exchanger, sarcoplasmic reticulum Ca(2+)-ATPase, ryanodine receptor and phospholamban. Over years many therapeutic strategies have been recommended for treatment of diabetic cardiomyopathy. Lately, inorganic elements have been suggested to have anti-diabetic effects due to their suggested ability to regulate glucose homeostasis, reduce oxidative stress or suppress phosphatases. Recent findings have shown that trace elements exert many biological effects including insulin-mimetic or antioxidant activity and in this manner they have been recommended as potential candidates for treatment of diabetes-induced cardiac complications, an effect based on their modes of action. Some of these trace elements are known to play an essential role as component of enzymes and thus modulate the organ function in physiological and pathological conditions. Besides, they can also manipulate redox state of the channels via antioxidant properties and thus contribute to the regulation of [Ca(2+)]i homeostasis and cardiac ion channels. On account of little information about some trace elements, we discussed the effect of vanadium, selenium, zinc and tungstate on diabetic heart complications.
Food and Chemical Toxicology | 2013
Ceren Kencebay; Narin Derin; Ozlem Ozsoy; Dijle Kipmen-Korgun; Gamze Tanriover; Nihal Ozturk; Goksun Basaranlar; Piraye Yargicoglu-Akkiraz; Berna Sozen; Aysel Agar
We aimed at investigating the effects of sulfite-induced lipid peroxidation and apoptosis mediated by secretory phospholipase A2 (sPLA2) on somatosensory evoked potentials (SEP) alterations in rats. Thirty male albino Wistar rats were randomized into three experimental groups as follows; control (C), sodium metabisulfite treated (S), sodium metabisulfite+quinacrine treated (SQ). Sodium metabisulfite (100 mg/kg/day) was given by gastric gavage for 5 weeks and 10 mg/kg/day quinacrine was applied as a single dose of intraperitoneal injection for the same period. The latencies of SEP components were significantly prolonged in the S group and returned to control levels following quinacrine administration. Plasma-S-sulfonate level was increased in S and SQ groups. TBARS levels in the S group were significantly higher than those detected in controls. Quinacrine significantly decreased brain TBARS levels in the SQ group compared with the S group. Quinacrine treatment did not have an effect on the increased sPLA2 level of the sulfite administered group. Immunohistochemistry showed that sulfite caused an increase in caspase-3 and TUNEL positive cells, restored to control levels via quinacrine administration. This study showed that sPLA2 might play a role in ingested sulfite-induced SEP alterations, oxidative stress, apoptotic cell death and DNA damage in the brain.
Neurotoxicology and Teratology | 2011
Nihal Ozturk; Piraye Yargicoglu; Narin Derin; Deniz Akpinar; Aysel Agar; Mutay Aslan
The aim of this study was to clarify the dose-dependent effect of sulfite (SO₃²⁻) ingestion on brain and retina by means of electrophysiological and biochemical parameters. Fifty two male Wistar rats, aged 3 months, were randomized into four experimental groups of 13 rats as follows; control (C), sulfite treated groups (S(1); 10 mg/kg/day, S₂; 100mg/kg/day, S₃; 260 mg/kg/day). Control rats were administered distilled water, while the other three groups were given sodium metabisulfite (Na₂S₂O₅) of amounts mentioned above, via gavage for a period of 35 days. All components of visual evoked potential (VEP) were prolonged in S₂ and S₃ groups compared with S₁ and C groups. Plasma-S-sulfonate levels, which are an indicator of sulfur dioxide (SO₂) exposure, were increased in Na₂S₂O₅ treated groups in a dose-dependent manner. Furthermore, the significant increments in thiobarbituric acid reactive substances (TBARS) and 4-hydroxy-2-nonenal (4-HNE) levels occurred with increasing intake of Na₂S₂O₅. Though not significant, glutathione (GSH) and oxidized glutathione (GSSG) levels were observed to decrease with increasing doses of Na₂S₂O₅. In conclusion, Na₂S₂O₅ treatment in rats caused a dose-dependent increase in lipid peroxidation and all VEP latencies. The data indicate that lipid peroxidation could play an important role in sulfite toxicity.
Folia Histochemica Et Cytobiologica | 2016
Deniz Kantar Gok; Nihal Ozturk; Hakan Er; Mutay Aslan; Necdet Demir; Narin Derin; Aysel Agar; Piraye Yargicoglu
INTRODUCTION Animal models designed to mimic certain features of Alzheimers disease (AD) can help us to increase our understanding of the underlying mechanisms of disease. Previous studies have revealed that long-term D-galactose injection combined with ovariectomy results in pathophysiologic alterations associated with AD. Thus, the aim of the present study was to investigate the effects of rosmarinic acid (RA) administration on pathological changes associated with ovariectomy and D-galactose injection, which serve as a two-insult model for AD. MATERIAL AND METHODS One hundred female Wistar rats were divided into five equal groups: control (C), Sham (Sh), rosmarinic acid treated (R), ovariectomized rats treated with D-galactose (OD), ovariectomized rats treated with D-galactose and rosmarinic acid (ODR) groups. D-galactose (80 mg/kg/day) was administered by i.p. injection and RA (50 mg/kg/day) was given via gavage for 60 days. Open field and Y-maze tests were used to assess locomotor activity and short-term spatial memory, respectively. Biochemical and histopathological analyses of the brain tissue were performed. RESULTS Open field testing showed that the locomotor activity and exploratory behavior of rats were prominently impaired in the OD group as compared to the other studied groups. Similarly, Y-maze test results revealed a decrease of short-term spatial memory in the OD rats. A concomitant treatment with RA significantly restored altered locomotor activity and cognitive functions in the ODR group. Lipid peroxidation levels, cyclooxygenase-2 expression and prostaglandin E2 levels in the brain tissue were higher in the OD group and RA treatment inhibited these changes. AD-like histopathological alterations and amyloid b peptide (Ab) depositions were observed in the OD group. Normal cell structure and lower Ab depositions were observed in the ODR group compared with the OD group. CONCLUSIONS RA could have the potential to prevent some psychological and biochemical alterations of brain tissue found in a rat model of AD probably by attenuating lipid peroxidation and inflammatory response.
Electromagnetic Biology and Medicine | 2012
Deniz Akpinar; Nihal Ozturk; Sukru Ozen; Aysel Agar; Piraye Yargicoglu
The aim of the study was to investigate the effects of extremely low-frequency electric field (ELF EF) on visual evoked potential (VEP), thiobarbituric acid reactive substances (TBARS), total antioxidant status (TAS), total oxidant status (TOS), and oxidant stress index (OSI). Thirty female Wistar rats, aged 3 months, were divided into three equal groups: Control (C), the group exposed to EF at 12 kV/m strength (E12), and the group exposed to EF at 18 kV/m strength (E18). Electric field was applied to the E12 and E18 groups for 14 days (1 h/day). Brain and retina TBARS, TOS, and OSI were significantly increased in the E12 and E18 groups with respect to the control group. Also, TBARS levels were significantly increased in the E18 group compared with the E12 group. Electric fields significantly decreased TAS levels in both brain and retina in E12 and E18 groups with respect to the control group. All VEP components were significantly prolonged in rats exposed to electric fields compared to control group. In addition, all latencies of VEP components were increased in the E18 group with respect to the E12 group. It is conceivable to suggest that EF-induced lipid peroxidation may play an important role in changes of VEP parameters.
Cell Calcium | 2017
Yusuf Olgar; Murat Cenk Celen; Bilge Eren Yamasan; Nihal Ozturk; Belma Turan; Semir Ozdemir
Recent studies have implicated a relationship between RhoA/ROCK activity and defective Ca2+ homeostasis in hypertrophic hearts. This study investigated molecular mechanism underlying ROCK inhibition-mediated cardioprotection against pressure overload-induced cardiac hypertrophy, with a focus on Ca2+ homeostasis. Cardiac hypertrophy model was established by performing transverse aortic constriction (TAC) in 8-week-old male rats. Groups were assigned as SHAM, TAC and TAC+Fas (rats undergoing TAC and treated with fasudil). Rats in the TAC+Fas group were administered fasudil (5mg/kg/day), and rats in the SHAM and TAC groups were treated with vehicle for 10 weeks. Electrophysiological recordings were obtained from isolated left ventricular myocytes and expression levels of proteins were determined using western blotting. Rats in the TAC group showed remarkable cardiac hypertrophy, and fasudil treatment significantly reversed this alteration. TAC+Fas myocytes showed significant improvement in reduced contractility and Ca2+ transients. Moreover, these myocytes showed restoration of slow relaxation rate and Ca2+ reuptake. Although L-type Ca2+ currents did not change in TAC group, there was a significant reduction in the triggered Ca2+ transients which was reversed either by long-term fasudil treatment or incubation of TAC myocytes with fasudil. The hearts of rats in the TAC group showed a significant decrease in ROCK1, ROCK2, RyR2 protein levels and p-PLBS16/T17/SERCA2 ratio and increase in RhoA expression and MLC phosphorylation. However, fasudil treatment largely reversed TAC-induced alterations in protein expression. Thus, our findings indicate that upregulation of the RhoA/ROCK pathway is significantly associated with cardiac hypertrophy-related Ca2+ dysregulation and suggest that ROCK inhibition prevents hypertrophic heart failure.
International Journal of Ophthalmology | 2016
Mehmet Bulut; Baris Ozgur Donmez; Nihal Ozturk; Goksun Basaranlar; Ceren Kencebay Manas; Narin Derin; Semir Ozdemir
AIM To evaluate the effect of sodium tungstate on visual evoked potentials (VEPs) in diabetic rats. METHODS Wistar rats were randomly divided into three groups as normal control, diabetic control and diabetic rats treated with sodium tungstate. Diabetes was induced by single intraperitoneal injection of streptozotocin (50 mg/kg). Sodium tungstate [40 mg/(kg·d)] was administered for 12wk and then VEPs were recorded. Additionally, thiobarbituric acid reactive substance (TBARS) levels were measured in brain tissues. RESULTS The latencies of P1, N1, P2, N2 and P3 waves were significantly prolonged in diabetic rats compared with control group. Diabetes mellitus caused an increase in the lipid peroxidation process that was accompanied by changes in VEPs. However, prolonged latencies of VEPs for all components returned to control levels in sodium tungstate-treated group. The treatment of sodium tungstate significantly decreased brain TBARS levels and depleted the prolonged latencies of VEP components compared with diabetic control group. CONCLUSION Sodium tungstate shows protective effects on visual pathway in diabetic rats, and it can be worthy of further study for potential use.
Experimental Eye Research | 2011
Serdar Dogan; Mustafa Ünal; Nihal Ozturk; Piraye Yargicoglu; Aysegul Cort; Ivan Spasojevic; Ines Batinic-Haberle; Mutay Aslan