Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nihar R. Nayak is active.

Publication


Featured researches published by Nihar R. Nayak.


Biology of Reproduction | 2007

Decidual Stromal Cell Response to Paracrine Signals from the Trophoblast: Amplification of Immune and Angiogenic Modulators

Ap Hess; Amy E. Hamilton; Said Talbi; Chrysoula Dosiou; Mette Nyegaard; Nihar R. Nayak; O Genbecev-Krtolica; Patricia A. Mavrogianis; K Ferrer; J.S. Kruessel; Asgerally T. Fazleabas; Sj Fisher; Linda C. Giudice

Abstract During the invasive phase of implantation, trophoblasts and maternal decidual stromal cells secrete products that regulate trophoblast differentiation and migration into the maternal endometrium. Paracrine interactions between the extravillous trophoblast and the maternal decidua are important for successful embryonic implantation, including establishing the placental vasculature, anchoring the placenta to the uterine wall, and promoting the immunoacceptance of the fetal allograph. To our knowledge, global crosstalk between the trophoblast and the decidua has not been elucidated to date, and the present study used a functional genomics approach to investigate these paracrine interactions. Human endometrial stromal cells were decidualized with progesterone and further treated with conditioned media from human trophoblasts (TCM) or, as a control, with control conditioned media (CCM) from nondecidualized stromal cells for 0, 3, and 12 h. Total RNA was isolated and processed for analysis on whole-genome, high-density oligonucleotide arrays containing 54 600 genes. We found that 1374 genes were significantly upregulated and that 3443 genes were significantly downregulated after 12 h of coincubation of stromal cells with TCM, compared to CCM. Among the most upregulated genes were the chemokines CXCL1 (GRO1) and IL8,CXCR4, and other genes involved in the immune response (CCL8 [SCYA8], pentraxin 3 (PTX3), IL6, and interferon-regulated and -related genes) as well as TNFAIP6 (tumor necrosis factor alpha-induced protein 6) and metalloproteinases (MMP1, MMP10, and MMP14). Among the downregulated genes were growth factors, e.g., IGF1, FGF1, TGFB1, and angiopoietin-1, and genes involved in Wnt signaling (WNT4 and FZD). Real-time RT-PCR and ELISAs, as well as immunohistochemical analysis of human placental bed specimens, confirmed these data for representative genes of both up- and downregulated groups. The data demonstrate a significant induction of proinflammatory cytokines and chemokines, as well as angiogenic/static factors in decidualized endometrial stromal cells in response to trophoblast-secreted products. The data suggest that the trophoblast acts to alter the local immune environment of the decidua to facilitate the process of implantation and ensure an enriched cytokine/chemokine environment while limiting the mitotic activity of the stromal cells during the invasive phase of implantation.


Nature Medicine | 2006

VEGF modulates erythropoiesis through regulation of adult hepatic erythropoietin synthesis

Betty Y. Y. Tam; Kevin Wei; John S. Rudge; Jana Hoffman; Joceyln Holash; Sang-ki Park; Jenny Yuan; Colleen Hefner; Cecile Chartier; Jeng-Shin Lee; Shelly Jiang; Nihar R. Nayak; Frans A. Kuypers; Lisa Ma; Uma Sundram; Grace Wu; Joseph A. Garcia; Stanley L. Schrier; Jacquelyn J. Maher; Randall S. Johnson; George D. Yancopoulos; Richard C. Mulligan; Calvin J. Kuo

Vascular endothelial growth factor (VEGF) exerts crucial functions during pathological angiogenesis and normal physiology. We observed increased hematocrit (60–75%) after high-grade inhibition of VEGF by diverse methods, including adenoviral expression of soluble VEGF receptor (VEGFR) ectodomains, recombinant VEGF Trap protein and the VEGFR2-selective antibody DC101. Increased production of red blood cells (erythrocytosis) occurred in both mouse and primate models, and was associated with near-complete neutralization of VEGF corneal micropocket angiogenesis. High-grade inhibition of VEGF induced hepatic synthesis of erythropoietin (Epo, encoded by Epo) >40-fold through a HIF-1α–independent mechanism, in parallel with suppression of renal Epo mRNA. Studies using hepatocyte-specific deletion of the Vegfa gene and hepatocyte–endothelial cell cocultures indicated that blockade of VEGF induced hepatic Epo by interfering with homeostatic VEGFR2-dependent paracrine signaling involving interactions between hepatocytes and endothelial cells. These data indicate that VEGF is a previously unsuspected negative regulator of hepatic Epo synthesis and erythropoiesis and suggest that levels of Epo and erythrocytosis could represent noninvasive surrogate markers for stringent blockade of VEGF in vivo.NOTE: In the version of this article initially published, the name of one of the authors, Nihar R. Nayak, was misspelled as Nihar R. Niyak. The error has been corrected in the HTML and PDF versions of the article.


The FASEB Journal | 2008

VEGF blockade inhibits angiogenesis and reepithelialization of endometrium

Xiujun Fan; Sacha Krieg; Calvin J. Kuo; Stanley J. Wiegand; Marlene Rabinovitch; Maurice L. Druzin; Robert M. Brenner; Linda C. Giudice; Nihar R. Nayak

Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangio‐genesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2‐neuropilin 1 (VEGFR2‐NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endo‐metrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angio‐genesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.—Fan, X., Krieg, S., Kuo, C. J., Wiegand, S. J., Rabinovitch, M., Druzin, M. L., Brenner, R. M., Giudice, L. C., Nayak, N. R. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. FASEB J. 22, 3571–3580 (2008)


Proceedings of the National Academy of Sciences of the United States of America | 2008

Soluble receptor-mediated selective inhibition of VEGFR and PDGFRβ signaling during physiologic and tumor angiogenesis

Frank Kuhnert; Betty Y. Y. Tam; Barbara Sennino; John T. Gray; Jenny Yuan; Angeline Jocson; Nihar R. Nayak; Richard C. Mulligan; Donald M. McDonald; Calvin J. Kuo

The simultaneous targeting of both endothelial cells and pericytes via inhibition of VEGF receptor (VEGFR) and PDGFβ receptor (PDGFRβ) signaling, respectively, has been proposed to enhance the efficacy of antiangiogenic tumor therapy. Clinical and preclinical modeling of combined VEGFR and PDGFRβ signaling inhibition, however, has used small molecule kinase inhibitors with inherently broad substrate specificities, precluding detailed examination of this hypothesis. Here, adenoviral expression of a soluble VEGFR2/Flk1 ectodomain (Ad Flk1-Fc) in combination with a soluble ectodomain of PDGFRβ (Ad sPDGFRβ) allowed highly selective inhibition of these pathways. The activity of Ad sPDGFRβ was validated in vitro against PDGF-BB and in vivo with near-complete blockade of pericyte recruitment in the angiogenic corpus luteum, resulting in prominent hemorrhage, thus demonstrating an essential function for PDGF signaling during ovarian angiogenesis. Combination therapy with Ad PDGFRβ and submaximal doses of Ad Flk1-Fc produced modest additive antitumor effects; however, no additivity was observed with maximal VEGF inhibition in numerous s.c. models. Notably, VEGF inhibition via Ad Flk1-Fc was sufficient to strongly suppress tumor endothelial and pericyte content as well as intratumoral PDGF-B mRNA, obscuring additive Ad sPDGFRβ effects on pericytes or tumor volume. These studies using highly specific soluble receptors suggest that additivity between VEGFR and PDGFRβ inhibition depends on the strength of VEGF blockade and appears minimal under conditions of maximal VEGF antagonism.


Placenta | 2009

Effect of heme oxygenase-1 deficiency on placental development.

Hui Zhao; Ronald J. Wong; Flora Kalish; Nihar R. Nayak; David K. Stevenson

Heme oxygenase (HO) is the rate-limiting enzyme in the heme catabolic pathway and highly expressed in the placenta. Deficiencies in HO-1, the inducible isoform, have been associated with pregnancy disorders, such as recurrent miscarriages, intrauterine growth retardation, and pre-eclampsia. The aim of this study was to identify if a deficiency in HO-1 affects placental development using a mouse model. When HO-1 heterozygote (Het, HO-1(+/-)) mice were cross-bred, an extremely low birth rate in homozygote (Mut, HO-1(-/-)) offspring (2.4%) and small litter sizes were observed. Placentas and fetuses from Het cross-breedings were relatively smaller and weighed less than those from wild-type (WT) cross-breedings at E12.5 and E15.5. Furthermore, Het placentas had significantly less HO-1 mRNA and protein levels than WT placentas, but no significant differences in placental HO activity. Interestingly, HO-2, the constituitive HO isoform, as well as iNOS and eNOS expression were significantly upregulated in Het placentas. Histological examination showed that the junctional zone (JZ) of Het placentas were markedly thinner than those of WT placentas and appeared to be due to an increase in apoptosis. Immunohistochemistry revealed that HO-1-expressing cells were located primarily in the JZ of Het placentas, specifically in the spongiotrophoblast layer. In addition, diastolic blood pressures and plasma soluble VEGFR-1 (sFlt-1) levels were significantly elevated in pregnant Het mice. We conclude that a partial deficiency in HO-1 is associated with morphological changes in the placenta and elevations in maternal diastolic blood pressure and plasma sFlt-1 levels, despite a compensatory increase in HO-2 expression.


Journal of Clinical Investigation | 2014

Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications

Xiujun Fan; Anshita Rai; Neeraja Kambham; Joyce F. Sung; Nirbhai Singh; Matthew Petitt; Sabita Dhal; Rani Agrawal; Richard E. Sutton; Maurice L. Druzin; Sanjiv S. Gambhir; Balamurali K. Ambati; James C. Cross; Nihar R. Nayak

There is strong evidence that overproduction of soluble fms-like tyrosine kinase-1 (sFLT1) in the placenta is a major cause of vascular dysfunction in preeclampsia through sFLT1-dependent antagonism of VEGF. However, the cause of placental sFLT1 upregulation is not known. Here we demonstrated that in women with preeclampsia, sFLT1 is upregulated in placental trophoblasts, while VEGF is upregulated in adjacent maternal decidual cells. In response to VEGF, expression of sFlt1 mRNA, but not full-length Flt1 mRNA, increased in cultured murine trophoblast stem cells. We developed a method for transgene expression specifically in mouse endometrium and found that endometrial-specific VEGF overexpression induced placental sFLT1 production and elevated sFLT1 levels in maternal serum. This led to pregnancy losses, placental vascular defects, and preeclampsia-like symptoms, including hypertension, proteinuria, and glomerular endotheliosis in the mother. Knockdown of placental sFlt1 with a trophoblast-specific transgene caused placental vascular changes that were consistent with excess VEGF activity. Moreover, sFlt1 knockdown in VEGF-overexpressing animals enhanced symptoms produced by VEGF overexpression alone. These findings indicate that sFLT1 plays an essential role in maintaining vascular integrity in the placenta by sequestering excess maternal VEGF and suggest that a local increase in VEGF can trigger placental overexpression of sFLT1, potentially contributing to the development of preeclampsia and other pregnancy complications.


American Journal of Reproductive Immunology | 2004

The Immune Environment in Human Endometrium during the Window of Implantation

S. Lobo; Ariane Germeyer; Chrysoula Dosiou; Kim Chi Vo; Suzana Tulac; Nihar R. Nayak; Linda C. Giudice

Problem:  Changes in the immune environment in the endometrium are believed to be important for successful implantation and maintenance of pregnancy. We have previously investigated global gene profiling in human endometrium during the window of implantation by oligonucleotide microarray technology, and analysis of these data underscore the regulation of a group of immune‐related genes. The present study was therefore conducted to examine the pattern of expression and regulation of these genes including decay accelerating factor (DAF), indoleamine 2,3 dioxygenase (IDO), interleukin‐15 (IL‐15), IL‐15 receptor alpha subunit (IL‐15Rα), interferon regulatory factor‐1 (IRF‐1), lymphotactin (Lpn), natural killer‐associated transcript 2 (NKAT2) and NKG5 in secretory and proliferative human endometrium.


Biology of Reproduction | 2010

Lack of Functional Pregnancy-Associated Plasma Protein-A (PAPPA) Compromises Mouse Ovarian Steroidogenesis and Female Fertility

Mette Nyegaard; Michael Toft Overgaard; You Qiang Su; Amy E. Hamilton; Jakub Kwintkiewicz; Minnie Hsieh; Nihar R. Nayak; Marco Conti; Cheryl A. Conover; Linda C. Giudice

The insulin-like growth factor (IGF) system plays an important role in regulating ovarian follicular development and steroidogenesis. IGF binding proteins (IGFBP) mostly inhibit IGF actions, and IGFBP proteolysis is a major mechanism for regulating IGF bioavailability. Pregnancy-associated plasma protein-A (PAPPA) is a secreted metalloprotease responsible for cleavage of IGFBP4 in the ovary. The aim of this study was to investigate whether PAPPA plays a role in regulating ovarian functions and female fertility by comparing the reproductive phenotype of wild-type (WT) mice with mice heterozygous or homozygous for a targeted Pappa gene deletion (heterozygous and PAPP-A knockout [KO] mice, respectively). When mated with WT males, PAPP-A KO females demonstrated an overall reduction in average litter size. PAPP-A KO mice had a reduced number of ovulated oocytes, lower serum estradiol levels following equine chorionic gonadotropin administration, lower serum progesterone levels after human chorionic gonadotropin injection, and reduced expression of ovarian steroidogenic enzyme genes, compared to WT controls. In PAPP-A KO mice, inhibitory IGFBP2, IGFBP3, and IGFBP4 ovarian gene expression was reduced postgonadotropin stimulation, suggesting some compensation within the ovarian IGF system. Expression levels of follicle-stimulating hormone receptor, luteinizing hormone receptor, and genes required for cumulus expansion were not affected. Analysis of preovulatory follicular fluid showed complete loss of IGFBP4 proteolytic activity in PAPP-A KO mice, demonstrating no compensation for loss of PAPPA proteolytic activity by other IGFBP proteases in vivo in the mouse ovary. Taken together, these data demonstrate an important role of PAPPA in modulating ovarian function and female fertility by control of the bioavailability of ovarian IGF.


Seminars in Reproductive Medicine | 2009

Regulation of angiogenesis in the primate endometrium: vascular endothelial growth factor.

Krishna P. Chennazhi; Nihar R. Nayak

Unlike other tissues, endometrial vessels are unique because their functions are primarily orchestrated under the influence of ovarian steroid hormones, estradiol and progesterone. Although there is controversy in the literature on the expression of steroid hormone receptors in endometrial endothelial and vascular smooth muscle cells, it is believed that the actions of estradiol and progesterone are primarily mediated by paracrine interactions between the vascular and other cells of the endometrium. However, the regulatory mechanisms and local factors involved in mediating these paracrine interactions are not fully understood. Numerous angiogenic factors have been identified and implicated in endometrial vascular development and differentiation, but their relative contribution in endometrial angiogenesis is unknown. This review primarily focuses on the current progress in understanding the roles of a prototypical angiogenic factor, the vascular endothelial growth factor (VEGF), in the primate endometrium. Regulation of VEGF and its receptors in the endometrium appears to be highly complex, regulated by both steroid hormones as well as local factors independent of steroid hormones. The zone-specific and the cell-type specific expression of VEGF and its receptors in the endometrium suggest that steroid hormones likely regulate their expression through local cell-specific regulatory factors, rather than through direct gene transcription. Because VEGF receptors are expressed in both endothelial and nonendothelial cells, VEGF may have a pleiotropic role in this tissue. Recent development of highly potent VEGF inhibitors provides an opportunity to study the roles of VEGF in the primate endometrium. It is imperative that future studies focus on understanding specific roles of VEGF using these inhibitors, which is critically needed for development of new therapeutic strategies for numerous endometrial vascular disorders.


Molecular Human Reproduction | 2012

Global alteration in gene expression profiles of deciduas from women with idiopathic recurrent pregnancy loss

Sacha Krieg; Xiujun Fan; Y. Hong; Q.-X. Sang; Amato J. Giaccia; Lynn M. Westphal; Ruth B. Lathi; Adam J. Krieg; Nihar R. Nayak

Recurrent pregnancy loss (RPL) occurs in ∼5% of women. However, the etiology is still poorly understood. Defects in decidualization of the endometrium during early pregnancy contribute to several pregnancy complications, such as pre-eclampsia and intrauterine growth restriction (IUGR), and are believed to be important in the pathogenesis of idiopathic RPL. We performed microarray analysis to identify gene expression alterations in the deciduas of idiopathic RPL patients. Control patients had one antecedent term delivery, but were undergoing dilation and curettage for current aneuploid miscarriage. Gene expression differences were evaluated using both pathway and gene ontology (GO) analysis. Selected genes were validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A total of 155 genes were found to be significantly dysregulated in the deciduas of RPL patients (>2-fold change, P < 0.05), with 22 genes up-regulated and 133 genes down-regulated. GO analysis linked a large percentage of genes to discrete biological functions, including immune response (23%), cell signaling (18%) and cell invasion (17.1%), and pathway analysis revealed consistent changes in both the interleukin 1 (IL-1) and IL-8 pathways. All genes in the IL-8 pathway were up-regulated while genes in the IL-1 pathway were down-regulated. Although both pathways can promote inflammation, IL-1 pathway activity is important for normal implantation. Additionally, genes known to be critical for degradation of the extracellular matrix, including matrix metalloproteinase 26 and serine peptidase inhibitor Kazal-type 1, were also highly up-regulated. In this first microarray approach to decidual gene expression in RPL patients, our data suggest that dysregulation of genes associated with cell invasion and immunity may contribute significantly to idiopathic recurrent miscarriage.

Collaboration


Dive into the Nihar R. Nayak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert M. Brenner

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debabrata Ghosh

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Jayasree Sengupta

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge