Niilo Kaldalu
University of Tartu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Niilo Kaldalu.
Fems Microbiology Letters | 2004
Iris Keren; Niilo Kaldalu; Amy Spoering; Yipeng Wang
Bacterial populations produce persister cells that neither grow nor die in the presence of microbicidal antibiotics. Persisters are largely responsible for high levels of biofilm tolerance to antimicrobials, but virtually nothing was known about their biology. Tolerance of Escherichia coli to ampicillin and ofloxacin was tested at different growth stages to gain insight into the nature of persisters. The number of persisters did not change in lag or early exponential phase, and increased dramatically in mid-exponential phase. Similar dynamics were observed with Pseudomonas aeruginosa (ofloxacin) and Staphylococcus aureus (ciprofloxacin and penicillin). This shows that production of persisters depends on growth stage. Maintaining a culture of E. coli at early exponential phase by reinoculation eliminated persisters. This suggests that persisters are not at a particular stage in the cell cycle, neither are they defective cells nor cells created in response to antibiotics. Our data indicate that persisters are specialized survivor cells.
Journal of Bacteriology | 2004
Iris Keren; T. Devang Shah; T. Amy Spoering; Niilo Kaldalu
Bacterial populations produce persisters, cells that neither grow nor die in the presence of bactericidal agents, and thus exhibit multidrug tolerance (MDT). The mechanisms of MDT and the nature of persisters have remained elusive. Our previous research has shown that persisters are largely responsible for the recalcitrance of biofilm infections. A general method for isolating persisters was developed, based on lysis of regular cells by ampicillin. A gene expression profile of persisters contained toxin-antitoxin (TA) modules and other genes that can block important cellular functions such as translation. Bactericidal antibiotics kill cells by corrupting the target function (for example, aminoglycosides interrupt translation, producing toxic peptides). We reasoned that inhibition of translation will lead to a shutdown of cellular functions, preventing antibiotics from corrupting their targets, giving rise to MDT persister cells. Overproduction of the RelE toxin, an inhibitor of translation, caused a sharp increase in persisters. Functional expression of a putative HipA toxin also increased persisters, while deletion of the hipBA module caused a sharp decrease in persisters in both stationary and biofilm populations. HipA is thus the first validated persister-MDT gene. We suggest that random fluctuation in the levels of MDT proteins leads to the formation of rare persister cells. The function of these specialized dormant cells is to ensure the survival of the population in the presence of lethal factors.
BMC Microbiology | 2008
Johanna Roostalu; Arvi Jõers; Hannes Luidalepp; Niilo Kaldalu; Tanel Tenson
BackgroundA fundamental characteristic of cells is the ability to divide. To date, most parameters of bacterial cultures, including cell division, have been measured as cell population averages, assuming that all bacteria divide at a uniform rate.ResultsWe monitored the division of individual cells in Escherichia coli cultures during different growth phases. Our experiments are based on the dilution of green fluorescent protein (GFP) upon cell division, monitored by flow cytometry. The results show that the vast majority of E. coli cells in exponentially growing cultures divided uniformly. In cultures that had been in stationary phase up to four days, no cell division was observed. However, upon dilution of stationary phase culture into fresh medium, two subpopulations of cells emerged: one that started dividing and another that did not. These populations were detectable by GFP dilution and displayed different side scatter parameters in flow cytometry. Further analysis showed that bacteria in the non-growing subpopulation were not dead, neither was the difference in growth capacity reducible to differences in stationary phase-specific gene expression since we observed uniform expression of several stress-related promoters. The presence of non-growing persisters, temporarily dormant bacteria that are tolerant to antibiotics, has previously been described within growing bacterial populations. Using the GFP dilution method combined with cell sorting, we showed that ampicillin lyses growing bacteria while non-growing bacteria retain viability and that some of them restart growth after the ampicillin is removed. Thus, our method enables persisters to be monitored even in liquid cultures of wild type strains in which persister formation has low frequency.ConclusionIn principle, the approaches developed here could be used to detect differences in cell division in response to different environmental conditions and in cultures of unicellular organisms other than E. coli.
Journal of Bacteriology | 2011
Hannes Luidalepp; Arvi Jõers; Niilo Kaldalu; Tanel Tenson
The majority of cells transferred from stationary-phase culture into fresh medium resume growth quickly, while a few remain in a nongrowing state for longer. These temporarily nonproliferating bacteria are tolerant of several bactericidal antibiotics and constitute a main source of persisters. Several genes have been shown to influence the frequency of persisters in Escherichia coli, although the exact mechanism underlying persister formation is unknown. This study demonstrates that the frequency of persisters is highly dependent on the age of the inoculum and the medium in which it has been grown. The hipA7 mutant had 1,000 times more persisters than the wild type when inocula were sampled from younger stationary-phase cultures. When started after a long stationary phase, the two displayed equal and elevated persister frequencies. The lower persister frequencies of glpD, dnaJ, and surA knockout strains were increased to the level of the wild type when inocula aged. The mqsR and phoU deletions showed decreased persister levels only when the inocula were from aged cultures, while sucB and ygfA deletions had decreased persister levels irrespective of the age of the inocula. A dependency on culture conditions underlines the notion that during screening for mutants with altered persister frequencies, the exact experimental details are of great importance. Unlike ampicillin and norfloxacin, which always leave a fraction of bacteria alive, amikacin killed all cells in the growth resumption experiment. It was concluded that the frequency of persisters depends on the conditions of inoculum cultivation, particularly its age, and the choice of antibiotic.
Antimicrobial Agents and Chemotherapy | 2004
Niilo Kaldalu; Rui Mei
ABSTRACT The basis of bactericidal versus bacteriostatic action of antibiotics and the mechanism of bacterial cell death are largely unknown. Related to this important issue is the essential invulnerability to killing of persisters: cells forming a small subpopulation largely responsible for the recalcitrance of biofilms to chemotherapy. To learn whether death is accompanied by changes in expression of particular genes, we compared transcription profiles of log-phase Escherichia coli treated with bactericidal concentrations of two unrelated antibiotics: ampicillin and ofloxacin. Massive changes in transcription profile were observed in response to either agent, and there was a significant overlap in genes whose transcription was affected. A small group of mostly uncharacterized genes was induced and a much larger set was transcriptionally repressed by both antibiotics. Among the repressed genes were those required for flagellar synthesis, energy metabolism, transport of small molecules, and protein synthesis.
Journal of Bacteriology | 2010
Arvi Jõers; Niilo Kaldalu; Tanel Tenson
A genetically homogenous bacterial population may contain physiologically distinct subpopulations. In one such case, a minor part of an otherwise antibiotic-sensitive bacterial population maintains a nondividing state even in a growth-supporting environment and is therefore not killed by bactericidal antibiotics. This phenomenon, called persistence, can lead to failure of antibiotic treatment. We followed the development of sensitivity to killing by ampicillin and norfloxacin when Escherichia coli cells were transferred from a stationary-phase culture into fresh growth medium. In parallel, we monitored growth resumption by individual bacteria. We found that bacteria in a population resumed growth and became sensitive to antibiotics at different times after transfer to fresh medium. Moreover, both growing and dormant bacteria coexisted in the same culture for many hours. The kinetics of awakening was strongly influenced by growth conditions: inocula taken from the same stationary-phase culture led to very different persister frequencies when they were transferred into different fresh media. Bactericidal antibiotics kill cells that have woken up, but the later-awakening subpopulation is tolerant to them and can be identified as persisters when the antibiotic is removed. Our observations demonstrate that persister count is a dynamic measure and that the persister frequency of a particular culture is not a fixed value.
BMC Microbiology | 2013
Villu Kasari; Toomas Mets; Tanel Tenson; Niilo Kaldalu
BackgroundBacterial toxin-antitoxin (TA) systems are formed by potent regulatory or suicide factors (toxins) and their short-lived inhibitors (antitoxins). Antitoxins are DNA-binding proteins and auto-repress transcription of TA operons. Transcription of multiple TA operons is activated in temporarily non-growing persister cells that can resist killing by antibiotics. Consequently, the antitoxin levels of persisters must have been dropped and toxins are released of inhibition.ResultsHere, we describe transcriptional cross-activation between different TA systems of Escherichia coli. We find that the chromosomal relBEF operon is activated in response to production of the toxins MazF, MqsR, HicA, and HipA. Expression of the RelE toxin in turn induces transcription of several TA operons. We show that induction of mazEF during amino acid starvation depends on relBE and does not occur in a relBEF deletion mutant. Induction of TA operons has been previously shown to depend on Lon protease which is activated by polyphospate accumulation. We show that transcriptional cross-activation occurs also in strains deficient for Lon, ClpP, and HslV proteases and polyphosphate kinase. Furthermore, we find that toxins cleave the TA mRNA in vivo, which is followed by degradation of the antitoxin-encoding fragments and selective accumulation of the toxin-encoding regions. We show that these accumulating fragments can be translated to produce more toxin.ConclusionTranscriptional activation followed by cleavage of the mRNA and disproportionate production of the toxin constitutes a possible positive feedback loop, which can fire other TA systems and cause bistable growth heterogeneity. Cross-interacting TA systems have a potential to form a complex network of mutually activating regulators in bacteria.
Journal of Bacteriology | 2010
Villu Kasari; Kristi Kurg; Tõnu Margus; Tanel Tenson; Niilo Kaldalu
Toxin-antitoxin (TA) systems are plasmid- or chromosome-encoded protein complexes composed of a stable toxin and a short-lived inhibitor of the toxin. In cultures of Escherichia coli, transcription of toxin-antitoxin genes was induced in a nondividing subpopulation of bacteria that was tolerant to bactericidal antibiotics. Along with transcription of known toxin-antitoxin operons, transcription of mqsR and ygiT, two adjacent genes with multiple TA-like features, was induced in this cell population. Here we show that mqsR and ygiT encode a toxin-antitoxin system belonging to a completely new family which is represented in several groups of bacteria. The mqsR gene encodes a toxin, and ectopic expression of this gene inhibits growth and induces rapid shutdown of protein synthesis in vivo. ygiT encodes an antitoxin, which protects cells from the effects of MqsR. These two genes constitute a single operon which is transcriptionally repressed by the product of ygiT. We confirmed that transcription of this operon is induced in the ampicillin-tolerant fraction of a growing population of E. coli and in response to activation of the HipA toxin. Expression of the MqsR toxin does not kill bacteria but causes reversible growth inhibition and elongation of cells.
Journal of Bacteriology | 2000
Niilo Kaldalu; Urve Toots; Víctor de Lorenzo; Mart Ustav
The alkylbenzoate degradation genes of Pseudomonas putida TOL plasmid are positively regulated by XylS, an AraC family protein, in a benzoate-dependent manner. In this study, we used deletion mutants and hybrid proteins to identify which parts of XylS are responsible for the DNA binding, transcriptional activation, and benzoate inducibility. We found that a 112-residue C-terminal fragment of XylS binds specifically to the Pm operator in vitro, protects this sequence from DNase I digestion identically to the wild-type (wt) protein, and activates the Pm promoter in vivo. When overexpressed, that C-terminal fragment could activate transcription as efficiently as wt XylS. All the truncations, which incorporated these 112 C-terminal residues, were able to activate transcription at least to some extent when overproduced. Intactness of the 210-residue N-terminal portion was found to be necessary for benzoate responsiveness of XylS. Deletions in the N-terminal and central regions seriously reduced the activity of XylS and caused the loss of effector control, whereas insertions into the putative interdomain region did not change the basic features of the XylS protein. Our results confirm that XylS consists of two parts which probably interact with each other. The C-terminal domain carries DNA-binding and transcriptional activation abilities, while the N-terminal region carries effector-binding and regulatory functions.
Applied Microbiology and Biotechnology | 2016
Niilo Kaldalu; Vasili Hauryliuk; Tanel Tenson
Persisters—a drug-tolerant sub-population in an isogenic bacterial culture—have been featured throughout the last decade due to their important role in recurrent bacterial infections. Numerous investigations detail the mechanisms responsible for the formation of persisters and suggest exciting strategies for their eradication. In this review, we argue that the very term “persistence” is currently used to describe a large and heterogeneous set of physiological phenomena that are functions of bacterial species, strains, growth conditions, and antibiotics used in the experiments. We caution against the oversimplification of the mechanisms of persistence and urge for a more rigorous validation of the applicability of these mechanisms in each case.