Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nike Claessen is active.

Publication


Featured researches published by Nike Claessen.


Journal of Clinical Investigation | 2005

Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney

Jaklien C. Leemans; Geurt Stokman; Nike Claessen; Gwendoline J. D. Teske; Carsten J. Kirschning; Shizuo Akira; Tom van der Poll; Jan J. Weening; Sandrine Florquin

TLRs are conserved pattern recognition receptors that detect motifs of pathogens and host material released during injury. For unknown reasons, renal TLR2 mRNA is mainly expressed by tubular cells and is enhanced upon renal ischemia/reperfusion (I/R) injury. We evaluated the role of TLR2 in I/R injury using TLR2-/- and TLR2+/+ mice, TLR2 antisense oligonucleotides, and chimeric mice deficient in leukocyte or renal TLR2. Tubular cells needed TLR2 to produce significant cytokine and chemokine amounts upon ischemia in vitro. TLR2 played a proinflammatory and detrimental role in vivo after I/R injury, as reflected by a reduction in the amount of local cytokines and chemokines, leukocytes, and the level of renal injury and dysfunction in TLR2-/- mice compared with controls. Analysis of chimeric mice suggested that TLR2 expressed on renal parenchyma plays a crucial role in the induction of inflammation and injury. TLR2-antisense treatment protected mice from renal dysfunction, neutrophil influx, and tubular apoptosis after I/R injury compared with nonsense treatment. In summary, we identified renal-associated TLR2 as an important initiator of inflammatory responses leading to renal injury and dysfunction in I/R injury. These data imply that TLR2 blockade could provide a basis for therapeutic strategies to treat or prevent renal ischemic injury.


PLOS ONE | 2007

Nicotine protects kidney from renal ischemia/reperfusion injury through the cholinergic anti-inflammatory pathway.

Claude Sadis; Gwen J. Teske; Geurt Stokman; Carole Kubjak; Nike Claessen; Fabrice Moore; Patrizia Loi; Bilo Diallo; Luc Barvais; Michel Goldman; Sandrine Florquin; Alain Le Moine

Kidney ischemia/reperfusion injury (I/R) is characterized by renal dysfunction and tubular damages resulting from an early activation of innate immunity. Recently, nicotine administration has been shown to be a powerful inhibitor of a variety of innate immune responses, including LPS-induced toxaemia. This cholinergic anti-inflammatory pathway acts via the α7 nicotinic acetylcholine receptor (α7nAChR). Herein, we tested the potential protective effect of nicotine administration in a mouse model of renal I/R injury induced by bilateral clamping of kidney arteries. Renal function, tubular damages and inflammatory response were compared between control animals and mice receiving nicotine at the time of ischemia. Nicotine pretreatment protected mice from renal dysfunction in a dose-dependent manner and through the α7nAChR, as attested by the absence of protection in α7nAChR-deficient mice. Additionally, nicotine significantly reduced tubular damages, prevented neutrophil infiltration and decreased productions of the CXC-chemokine KC, TNF-α and the proinflammatory high-mobility group box 1 protein. Reduced tubular damage in nicotine pre-treated mice was associated with a decrease in tubular cell apoptosis and proliferative response as attested by the reduction of caspase-3 and Ki67 positive cells, respectively. All together, these data highlight that nicotine exerts a protective anti-inflammatory effect during kidney I/R through the cholinergic α7nAChR pathway. In addition, this could provide an opportunity to overcome the effect of surgical cholinergic denervation during kidney transplantation.


Journal of The American Society of Nephrology | 2010

TLR4 Promotes Fibrosis but Attenuates Tubular Damage in Progressive Renal Injury

Wilco P. Pulskens; Elena Rampanelli; Gwendoline J. D. Teske; Loes M. Butter; Nike Claessen; Ilse K. Luirink; Tom van der Poll; Sandrine Florquin; Jaklien C. Leemans

Toll-like receptors (TLRs) can orchestrate an inflammatory response upon activation by pathogen-associated motifs and release of endogenous stress ligands during tissue injury. The kidney constitutively expresses most TLRs, including TLR4. The function of TLR4 during the inflammation, tubular atrophy, and fibrosis that accompany progressive renal injury is unknown. Here, we subjected wild-type (WT) and TLR4-deficient mice to unilateral ureteral obstruction and observed elevated levels of TLR4 mRNA in the kidney after obstruction. One day after unilateral ureteral obstruction, TLR4-deficient mice had fewer proliferating tubular epithelial cells and more tubular damage than WT mice; however, TLR4-deficient mice developed considerably less renal fibrosis despite decreased matrix metalloproteinase activity and without significant differences in myofibroblast accumulation. In vitro, TLR4-deficient primary tubular epithelial cells and myofibroblasts produced significantly less type I collagen mRNA after TGF-beta stimulation than WT cells. The reduced fibrosis in TLR4-deficient mice associated with an upregulation of Bambi, a negative regulator of TGF-beta signaling. In conclusion, TLR4 attenuates tubular damage but promotes renal fibrosis by modulating the susceptibility of renal cells to TGF-beta. These data suggest that TLR4 signaling may be a therapeutic target for the prevention of renal fibrosis.


Journal of The American Society of Nephrology | 2005

Protection against Renal Ischemia Reperfusion Injury by CD44 Disruption

Joris J. T. H. Roelofs; Nike Claessen; Paula da Costa Martins; Jaap-Jan Zwaginga; Steven T. Pals; Jan J. Weening; Sandrine Florquin

Inflammation contributes to renal ischemia reperfusion (I/R) injury, potentially causing renal dysfunction. The inflammatory infiltrate mainly consists of neutrophils, which are deleterious for the renal tissue. Because CD44 is expressed by neutrophils and is rapidly upregulated by capillary endothelial cells after I/R injury, it was hypothesized that CD44 might play an important role in the development of I/R injury. This study showed that rapid CD44 upregulation on renal capillary endothelial cells mediates neutrophil recruitment to the postischemic tissue. Hence, CD44 deficiency led to decreased influx of neutrophils regardless of comparable levels in chemotactic factors expressed in the kidney. The reduced influx of neutrophils was associated with preserved renal function and morphology. Adoptive transfer experiments of labeled neutrophils revealed that endothelial CD44 rather than neutrophil CD44 mediates neutrophil migration. Activation of neutrophils increased cell-surface expression of hyaluronic acid (HA). Altogether, a novel mechanism in the recruitment of neutrophils that involves interaction of endothelial CD44 and neutrophil HA was found. Either blocking endothelial CD44 or removal of neutrophil HA decreased rolling and adhesion of neutrophils. Administration of anti-CD44 to mice reduced the influx of neutrophils into the postischemic tissue, associated with renal function preservation. Therefore, anti-CD44-based therapies may contribute to prevent or reduce renal I/R injury.


Journal of The American Society of Nephrology | 2005

Hematopoietic stem cell mobilization therapy accelerates recovery of renal function independent of stem cell contribution.

Geurt Stokman; Jaklien C. Leemans; Nike Claessen; Jan J. Weening; Sandrine Florquin

Acute renal failure and tubular cell loss as a result of ischemia constitute major challenges in renal pathophysiology. Increasing evidence suggests important roles for bone marrow stem cells in the regeneration of renal tissue after injury. This study investigated whether the enhanced availability of hematopoietic stem cells, induced by stem cell factor and granulocyte colony-stimulating factor, to the injured kidney provides an adequate strategy for stem cell-based therapy to counteract renal ischemia/reperfusion injury. It is interesting that cytokine treatment before injury resulted in significant enhancement of function recovery of the kidney. This, however, was not due to increased incorporation of tubular epithelial cells from bone marrow origin. Importantly, cytokine treatment resulted in impaired influx of granulocytes into the injured kidney. Although cytokine treatment improved renal function rapidly after ischemic injury, the results show that the underlying mechanism likely is not based on stem cell transdifferentiation but rather on altered inflammatory kinetics.


Journal of Clinical Investigation | 2012

Blood pressure influences end-stage renal disease of Cd151 knockout mice

Norman Sachs; Nike Claessen; Jan Aten; Maaike Kreft; Gwendoline J. D. Teske; Anneke Koeman; Coert J. Zuurbier; Hans Janssen; Arnoud Sonnenberg

Podocytes of the kidney adhere tightly to the underlying glomerular basement membrane (GBM) in order to maintain a functional filtration barrier. The clinical importance of podocyte binding to the GBM via an integrin-laminin-actin axis has been illustrated in models with altered function of α3β1 integrin, integrin-linked kinase, laminin-521, and α-actinin 4. Here we expanded on the podocyte-GBM binding model by showing that the main podocyte adhesion receptor, integrin α3β1, interacts with the tetraspanin CD151 in situ in humans. Deletion of Cd151 in mouse glomerular epithelial cells led to reduced adhesive strength to laminin by redistributing α3β1 at the cell-matrix interface. Moreover, in vivo podocyte-specific deletion of Cd151 led to glomerular nephropathy. Although global Cd151-null B6 mice were not susceptible to renal disease, as has been shown previously, increasing blood and transcapillary filtration pressure induced nephropathy in these mice. Importantly, blocking the angiotensin-converting enzyme in renal disease-susceptible global Cd151-null FVB mice prolonged their median life span. Together, these results establish CD151 as a crucial modifier of integrin-mediated adhesion of podocytes to the GBM and show that blood pressure is an important factor in the initiation and progression of Cd151 knockout-induced nephropathy.


Archives of Dermatological Research | 1994

Increased expression of adhesion receptors in both lesional and non-lesional psoriatic skin.

O. J. de Boer; I. M. M. J. Wakelkamp; Steven T. Pals; Nike Claessen; Jan D. Bos; Pranab K. Das

Adhesion receptors and their ligands play a vital role in the immune system. We studied the expression of different adhesion receptors, using single- and double-staining immunohistochemical techniques, in both lesional and non-lesional skin specimens from seven psoriasis patients and in skin biopsy specimens from eight normal healthy controls. Our results showed an overall increased expression of several adhesion receptors in both lesional and non-lesional psoriatic skin. We consistently found an increased expression in particular of ICAM-1 and E-selectin on endothelial cells, and ICAM-1 on T cells and Langerhans cells. In contrast, a weak expression of VCAM-1 was found on endothelial cells and mononuclear cells in lesional psoriatic skin specimens alone. Interestingly, LFA-1 was also expressed on Langerhans cells, with a greater frequency in skin from lesional than from non-lesional sites, but was never expressed in skin from normal healthy individuals. Furthermore, significantly increased numbers of Langerhans cells and T cells with a positive reactivity for MAb HECA-452 were found in both lesional and non-lesional psoriatic skin. We hypothesize that the enhanced expression of adhesion receptors on migrating immunocompetent cells and endothelial cells of psoriatic skin in general facilitates the increased influx of activated T lymphocytes and other immunocomponent cells into the skin, and thus underscores the generalized character of the disease.


Journal of The American Society of Nephrology | 2006

CD44 disruption prevents degeneration of the capillary network in obstructive nephropathy via reduction of TGF-beta1-induced apoptosis

Nike Claessen; Steven T. Pals; Jan J. Weening; Sandrine Florquin

CD44 is a glycoprotein that is involved in inflammation and cell-cell/cell-matrix interactions, is upregulated in the kidney upon injury, and leads to fibrosis through enhancement of TGF-beta1 signaling. Absence of CD44 prevents development of renal fibrosis in unilateral ureteral obstruction (UUO). A hallmark of development of renal fibrosis is the degeneration of the capillary network. This study shows that CD44 is upregulated on capillary endothelial cells during UUO. For elucidation of the role of CD44 on peritubular endothelial cells in UUO, capillary network degeneration was compared in CD44+/+ and CD44-/- mice. As expected, degeneration of the capillary network was observed in CD44+/+ mice during UUO, associated with increased endothelial apoptosis. However, in the absence of CD44, degeneration of the network is prevented as a result of a decrease in the rate of apoptosis in endothelial cells. The divergence in endothelial apoptosis is not correlated to differential vascular endothelial growth factor or thrombospondin-1 expression. For further investigation of capillary regression, CD44+/+ and CD44-/- peritubular capillary endothelial cell lines were established. With the use of these cells, it is shown that interaction between CD44 and its ligand hyaluronic acid enhances the proapoptotic effect of TGF-beta1 but not thrombospondin-1 on endothelial cells, contributing to the degeneration of the capillary network. Blocking interaction between hyaluronic acid and CD44 therefore may be a potential therapeutic opportunity to preserve the capillary network and prevent the development of fibrosis in chronic renal disease.


American Journal of Pathology | 2014

A Tissue-Specific Role for Nlrp3 in Tubular Epithelial Repair after Renal Ischemia/Reperfusion

Pieter J. Bakker; Loes M. Butter; Nike Claessen; Gwendoline J. D. Teske; Fayyaz S. Sutterwala; Sandrine Florquin; Jaklien C. Leemans

Ischemia/reperfusion injury is a major cause of acute kidney injury. Improving renal repair would represent a therapeutic strategy to prevent renal dysfunction. The innate immune receptor Nlrp3 is involved in tissue injury, inflammation, and fibrosis; however, its role in repair after ischemia/reperfusion is unknown. We address the role of Nlrp3 in the repair phase of renal ischemia/reperfusion and investigate the relative contribution of leukocyte- versus renal-associated Nlrp3 by studying bone marrow chimeric mice. We found that Nlrp3 expression was most profound during the repair phase. Although Nlrp3 expression was primarily expressed by leukocytes, both leukocyte- and renal-associated Nlrp3 was detrimental to renal function after ischemia/reperfusion. The Nlrp3-dependent cytokine IL-1β remained unchanged in kidneys of all mice. Leukocyte-associated Nlrp3 negatively affected tubular apoptosis in mice that lacked Nlrp3 expression on leukocytes, which correlated with reduced macrophage influx. Nlrp3-deficient (Nlrp3KO) mice with wild-type bone marrow showed an improved repair response, as seen by a profound increase in proliferating tubular epithelium, which coincided with increased hepatocyte growth factor expression. In addition, Nlrp3KO tubular epithelial cells had an increased repair response in vitro, as seen by an increased ability of an epithelial monolayer to restore its structural integrity. In conclusion, Nlrp3 shows a tissue-specific role in which leukocyte-associated Nlrp3 is associated with tubular apoptosis, whereas renal-associated Nlrp3 impaired wound healing.


Journal of Endocrinology | 2011

The prolactin receptor is expressed in macrophages within human carotid atherosclerotic plaques: a role for prolactin in atherogenesis?

Anne Q. Reuwer; Marco van Eijk; Felicia M Houttuijn-Bloemendaal; Chris M. van der Loos; Nike Claessen; Peter Teeling; John J. P. Kastelein; Jörg Hamann; Vincent Goffin; Jan H. von der Thüsen; Marcel Th. B. Twickler; Jan Aten

Atherosclerotic vascular disease is the consequence of a chronic inflammatory process, and prolactin has been shown to be a component of the inflammatory response. Additionally, recent studies indicate that prolactin contributes to an atherogenic phenotype. We hypothesized that this may be the result of a direct effect of prolactin on atherogenesis through activation of the prolactin receptor. Human carotid atherosclerotic plaques were obtained from patients by endarteriectomies. The mRNA of prolactin receptor, but not of prolactin, was detected in these atherosclerotic plaques by quantitative real-time PCR. In situ hybridization confirmed the expression of the prolactin receptor in mononuclear cells. Analysis at the protein level using immunohistochemistry and immunoelectron microscopy revealed that the prolactin receptor was abundantly present in macrophages near the lipid core and shoulder regions of the plaques. Our findings demonstrate that the prolactin receptor is present in macrophages of the atherosclerotic plaque at sites of most prominent inflammation. We therefore propose that prolactin receptor signaling contributes to the local inflammatory response within the atherosclerotic plaque and thus to atherogenesis.

Collaboration


Dive into the Nike Claessen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Aten

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingrid Stroo

University of Amsterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge