Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikhil Reddy Madadi is active.

Publication


Featured researches published by Nikhil Reddy Madadi.


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis and in vitro evaluation of N-alkyl-3-hydroxy-3-(2-imino-3-methyl-5-oxoimidazolidin-4-yl)indolin-2-one analogs as potential anticancer agents.

Narsimha Reddy Penthala; Thirupathi Reddy Yerramreddy; Nikhil Reddy Madadi; Peter A. Crooks

A series of novel 3-hydroxy-3-(2-imino-3-methyl-5-oxoimidazolidin-4-yl)indolin-2-one analogs (3) have been synthesized under microwave irradiation and conventional heating methods. These analogs were evaluated for in vitro cytotoxicity against a panel of 57 human tumor cell lines. Compound 3o had GI(50) values of 190 nM and 750 nM against A549/ATTC non-small cell lung cancer and LOX IMVI melanoma cell lines, respectively, and both 3n and 3o exhibited GI(50) values ranging from 2 to 5 microM against CCRF-CEM, HL-60(TB), K-562, MOLT-4, and RPMI-8226 leukemia cell lines. These results indicate that N-4-methoxybenzyl-3-hydroxy-(2-imino-3-methyl-5-oxo-4-yl)indolin-2-one analogs may be useful leads for anticancer drug development.


European Journal of Medicinal Chemistry | 2015

Synthesis and biological evaluation of novel 4,5-disubstituted 2H-1,2,3-triazoles as cis-constrained analogues of combretastatin A-4

Nikhil Reddy Madadi; Narsimha Reddy Penthala; Kevin Howk; Amit Ketkar; Robert L. Eoff; Michael J. Borrelli; Peter A. Crooks

A series of combretastatin A-4 (CA-4) analogues have been prepared from (Z)-substituted diarylacrylonitriles (1a-1p) obtained in a two-step synthesis from appropriate arylaldehydes and acrylonitriles. The resulting 4,5-disubstituted 2H-1,2,3-triazoles were evaluated for their anti-cancer activities against a panel of 60 human cancer cell lines. The diarylacrylonitrile analogue 2l exhibited the most potent anti-cancer activity in the screening studies, with GI₅₀ values of <10 nM against almost all the cell lines in the human cancer cell panel and TGI values of <10 nM against cancer cell lines SF-539, MDA-MB-435, OVCAR-3 and A498. Furthermore, in silico docking studies of compounds 2l, 2e and 2h within the active site of tubulin were carried out in order to rationalize the mechanism of the anti-cancer properties of these compounds. From the in silico studies, compound 2e was predicted to have better affinity for the colchicine binding site on tubulin compared to compounds 2l and 2h. Analogue 2e was also evaluated for its anti-cancer activity by colony formation assay against 9LSF rat gliosarcoma cells and afforded an LD₅₀ of 7.5 nM. A cell cycle redistribution assay using analogue 2e was conducted to further understand the mechanism of action of these CA-4 analogues. From this study, analogues 2e and 2l were the most potent anti-cancer agents in this structural class, and were considered lead compounds for further development as anti-cancer drugs.


Bioorganic & Medicinal Chemistry Letters | 2014

Synthesis and anti-proliferative activity of aromatic substituted 5-((1-benzyl-1H-indol-3-yl)methylene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione analogs against human tumor cell lines.

Nikhil Reddy Madadi; Narsimha Reddy Penthala; Venumadhav Janganati; Peter A. Crooks

Based on previous SAR studies on N-benzylindole and barbituric acid hybrid molecules, we have synthesized a series of aromatic substituted 5-((1-benzyl-1H-indol-3-yl)methylene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione analogs (3a-i) and evaluated them for their in vitro growth inhibition and cytotoxicity against a panel of 60 human tumor cell lines. Compounds 3c, 3d, 3f and 3g were identified as highly potent anti-proliferative compounds against ovarian, renal and breast cancer cell lines with GI50 values in low the nanomolar range. The 4-methoxy-N-benzyl analog (3d) was the most active compound with GI50 values of 20 nM and 40 nM against OVCAR-5 ovarian cancer cells and MDA-MB-468 breast cancer cells, respectively. Two other analogs, 3c (the 4-methyl-N-benzyl analog) and 3g (the 4-fluoro-N-benzyl analog) exhibited equimolar potency against MDA-MB-468 cells GI50=30 nM). Analog 3f (the 4-chloro-N-benzyl analog) exhibited a GI50 value of 40 nM against renal cancer cell line A498. These results suggest that aromatic substituted N-benzylindole dimethylbarbituric acid hybrids may have potential for development as clinical candidates to treat a variety of solid tumors.


Bioorganic & Medicinal Chemistry Letters | 2014

Anti-cancer activity of carbamate derivatives of melampomagnolide B

Venumadhav Janganati; Narsimha Reddy Penthala; Nikhil Reddy Madadi; Zheng Chen; Peter A. Crooks

Melampomagnolide B (MMB) is a natural sesquiterpene structurally related to parthenolide (PTL). We have shown that MMB exhibits anti-leukemic properties similar to PTL. Unlike PTL, the presence of a primary hydroxyl group in the MMB molecule allows the opportunity for examining the biological activity of a variety of conjugated analogs of MMB. We have now synthesized a series of carbamate analogs of MMB and evaluated these derivatives for anti-cancer activity against a panel of sixty human cancer cell lines. Analogs 6a and 6e exhibited promising anti-leukemic activity against human leukemia cell line CCRF-CEM with GI50 values of 680 and 620 nM, respectively. Analog 6a also showed GI50 values of 1.98 and 1.38 μM respectively, against RPMI-8226 and SR leukemia cell lines and GI50 values of 460 and 570 nM against MDA-MB-435 melanoma and MDA-MB-468 breast cancer cell lines, respectively. Analog 6e had GI50 values of 650 and 900 nM against HOP-92 non-small cell lung and RXF 393 renal cancer cell lines.


Bioorganic & Medicinal Chemistry Letters | 2013

Evaluation of (Z)-2-((1-benzyl-1H-indol-3-yl)methylene)-quinuclidin-3-one analogues as novel, high affinity ligands for CB1 and CB2 cannabinoid receptors.

Nikhil Reddy Madadi; Narsimha Reddy Penthala; Lisa K. Brents; Benjamin M. Ford; Paul L. Prather; Peter A. Crooks

A small library of N-benzyl indolequinuclidinone (IQD) analogs has been identified as a novel class of cannabinoid ligands. The affinity and selectivity of these IQDs for the two established cannabinoid receptor subtypes, CB1 and CB2, was evaluated. Compounds 8 (R=R(2)=H, R(1)=F) and 13 (R=COOCH3, R(1)=R(2)=H) exhibited high affinity for CB2 receptors with Ki values of 1.33 and 2.50 nM, respectively, and had lower affinities for the CB1 receptor (Ki values of 9.23 and 85.7 nM, respectively). Compound 13 had the highest selectivity of all the compounds examined, and represents a potent cannabinoid ligand with 34-times greater selectivity for CB2R over CB1R. These findings are significant for future drug development, given recent reports demonstrating beneficial use of cannabinoid ligands in a wide variety of human disease states including drug abuse, depression, schizophrenia, inflammation, chronic pain, obesity, osteoporosis and cancer.


MedChemComm | 2015

Synthesis and evaluation of a series of resveratrol analogues as potent anti-cancer agents that target tubulin.

Nikhil Reddy Madadi; Hongliang Zong; Amit Ketkar; Chen Zheng; Narsimha Reddy Penthala; Venumadhav Janganati; Shobanbabu Bommagani; Robert L. Eoff; Monica L. Guzman; Peter A. Crooks

A series of novel diarylacrylonitrile and trans-stilbene analogues of resveratrol has been synthesized and evaluated for their anticancer activities against a panel of 60 human cancer cell lines. The diarylacrylonitrile analogues 3b and 4a exhibited the most potent anticancer activity of all the analogues synthesized in this study, with GI50 values of < 10 nM against almost all the cell lines in the human cancer cell panel. Compounds 3b and 4a were also screened against the acute myeloid leukemia (AML) cell line, MV4-11, and were found to have potent cytotoxic properties that are likely mediated through inhibition of tubulin polymerization. Results from molecular docking studies indicate a common binding site for 4a and 3b on the 3,3-tubulin heterodimer, with a slightly more favorable binding for 3b compared to 4a; this is consistent with the results from the microtubule assays, which demonstrate that 4a is more potent than 3b in inhibiting tubulin polymerization in MV4-11 cells. Taken together, these data suggest that diarylacrylonitriles 3b and 4a may have potential as antitubulin therapeutics for treatment of both solid and hematological tumors.


Chemical Research in Toxicology | 2014

Novel Resveratrol-Based Substrates for Human Hepatic, Renal, and Intestinal UDP-Glucuronosyltransferases

Aleksandra K. Greer; Nikhil Reddy Madadi; Stacie M. Bratton; Sarah Eddy; Zofia Mazerska; Howard P. Hendrickson; Peter A. Crooks; Anna Radominska-Pandya

Trans-Resveratrol (tRes) has been shown to have powerful antioxidant, anti-inflammatory, anticarcinogenic, and antiaging properties; however, its use as a therapeutic agent is limited by its rapid metabolism into its conjugated forms by UDP-glucuronosyltransferases (UGTs). The aim of the current study was to test the hypothesis that the limited bioavailability of tRes can be improved by modifying its structure to create analogs which would be glucuronidated at a lower rate than tRes itself. In this work, three synthetic stilbenoids, (E)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)acrylic acid (NI-12a), (E)-2,4-dimethoxy-6-(4-methoxystyryl)benzaldehyde oxime (NI-ST-05), and (E)-4-(3,5-dimethoxystyryl)-2,6-dinitrophenol (DNR-1), have been designed based on the structure of tRes and synthesized in our laboratory. UGTs recognize and glucuronidate tRes at each of the 3 hydroxyl groups attached to its aromatic rings. Therefore, each of the above compounds was designed with the majority of the hydroxyl groups blocked by methylation and the addition of other novel functional groups as part of a drug optimization program. The activities of recombinant human UGTs from the 1A and 2B families were examined for their capacity to metabolize these compounds. Glucuronide formation was identified using HPLC and verified by β-glucuronidase hydrolysis and LC–MS/MS analysis. NI-12a was glucuronidated at both the −COOH and −OH functions, NI-ST-05 formed a novel N–O-glucuronide, and no product was observed for DNR-1. NI-12a is primarily metabolized by the hepatic and renal enzyme UGT1A9, whereas NI-ST-05 is primarily metabolized by an extrahepatic enzyme, UGT1A10, with apparent Km values of 240 and 6.2 μM, respectively. The involvement of hepatic and intestinal UGTs in the metabolism of both compounds was further confirmed using a panel of human liver and intestinal microsomes, and high individual variation in activity was demonstrated between donors. In summary, these studies clearly establish that modified, tRes-based stilbenoids may be preferable alternatives to tRes itself due to increased bioavailability via altered conjugation.


European Journal of Pharmacology | 2014

Characterization of the intrinsic activity for a novel class of cannabinoid receptor ligands: Indole quinuclidine analogs

Lirit N. Franks; Benjamin M. Ford; Nikhil Reddy Madadi; Narsimha Reddy Penthala; Peter A. Crooks; Paul L. Prather

Our laboratory recently reported that a group of novel indole quinuclidine analogs bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analog exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogs acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogs demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors.


Acta Crystallographica Section E-structure Reports Online | 2014

Comparison of crystal structures of 4-(benzo[b]thio­phen-2-yl)-5-(3,4,5-tri­meth­oxy­phen­yl)-2H-1,2,3-triazole and 4-(benzo[b]thio­phen-2-yl)-2-methyl-5-(3,4,5-tri­meth­oxy­phen­yl)-2H-1,2,3-triazole

Narsimha Reddy Penthala; Nikhil Reddy Madadi; Shobanbabu Bommagani; Sean Parkin; Peter A. Crooks

In the crystal structure of (I), the molecules are linked into chains by N—H⋯O hydrogen bonds with (5) ring motifs. After the N-methylation of structure (I), no hydrogen-bonding interactions were observed for structure (II).


Acta Crystallographica Section E: Crystallographic Communications | 2014

Comparison of Crystal Structures of 4-(benzo[ b ]thiophen-2-yl)-5-(3,4,5-trimethoxyphenyl)-2 H -1,2,3-triazole and 4-(benzo[ b ]thiophen-2-yl)-2-methyl-5-(3,4,5-trimethoxyphenyl)-2 H -1,2,3-triazole

Narsimha Reddy Penthala; Nikhil Reddy Madadi; Shobanbabu Bommagani; Sean Parkin; Peter A. Crooks

In the crystal structure of (I), the molecules are linked into chains by N—H⋯O hydrogen bonds with (5) ring motifs. After the N-methylation of structure (I), no hydrogen-bonding interactions were observed for structure (II).

Collaboration


Dive into the Nikhil Reddy Madadi's collaboration.

Top Co-Authors

Avatar

Peter A. Crooks

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Narsimha Reddy Penthala

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Robert L. Eoff

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Sean Parkin

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Venumadhav Janganati

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Amit Ketkar

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Shobanbabu Bommagani

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin M. Ford

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge