Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikhita D. Mansukhani is active.

Publication


Featured researches published by Nikhita D. Mansukhani.


Environmental Science & Technology | 2013

Colloidal Properties and Stability of Graphene Oxide Nanomaterials in the Aquatic Environment

Indranil Chowdhury; Matthew C. Duch; Nikhita D. Mansukhani; Mark C. Hersam; Dermont Bouchard

While graphene oxide (GO) has been found to be the most toxic graphene-based nanomaterial, its environmental fate is still unexplored. In this study, the aggregation kinetics and stability of GO were investigated using time-resolved dynamic light scattering over a wide range of aquatic chemistries (pH, salt types (NaCl, MgCl2, CaCl2), ionic strength) relevant to natural and engineered systems. Although pH did not have a notable influence on GO stability from pH 4 to 10, salt type and ionic strength had significant effects on GO stability due to electrical double layer compression, similar to other colloidal particles. The critical coagulation concentration (CCC) values of GO were determined to be 44 mM NaCl, 0.9 mM CaCl2, and 1.3 mM MgCl2. Aggregation and stability of GO in the aquatic environment followed colloidal theory (DLVO and Schulze-Hardy rule), even though GOs shape is not spherical. CCC values of GO were lower than reported fullerene CCC values and higher than reported carbon nanotube CCC values. CaCl2 destabilized GO more aggressively than MgCl2 and NaCl due to the binding capacity of Ca(2+) ions with hydroxyl and carbonyl functional groups of GO. Natural organic matter significantly improved the stability of GO in water primarily due to steric repulsion. Long-term stability studies demonstrated that GO was highly stable in both natural and synthetic surface waters, although it settled quickly in synthetic groundwater. While GO remained stable in synthetic influent wastewater, effluent wastewater collected from a treatment plant rapidly destabilized GO, indicating GO will settle out during the wastewater treatment process and likely accumulate in biosolids and sludge. Overall, our findings indicate that GO nanomaterials will be stable in the natural aquatic environment and that significant aqueous transport of GO is possible.


Environmental Science & Technology | 2015

Aggregation and Stability of Reduced Graphene Oxide: Complex Roles of Divalent Cations, pH, and Natural Organic Matter

Indranil Chowdhury; Nikhita D. Mansukhani; Linda M. Guiney; Mark C. Hersam; Dermont Bouchard

The aggregation and stability of graphene oxide (GO) and three successively reduced GO (rGO) nanomaterials were investigated. Reduced GO species were partially reduced GO (rGO-1h), intermediately reduced GO (rGO-2h), and fully reduced GO (rGO-5h). Specifically, influence of pH, ionic strength, ion valence, and presence of natural organic matter (NOM) were studied. Results show that stability of GO in water decreases with successive reduction of functional groups, with pH having the greatest influence on rGO stability. Stability is also dependent on ion valence and the concentration of surface functional groups. While pH did not noticeably affect stability of GO in the presence of 10 mM NaCl, adding 0.1 mM CaCl2 reduced stability of GO with increased pH. This is due to adsorption of Ca(2+) ions on the surface functional groups of GO which reduces the surface charge of GO. As the concentration of rGO functional groups decreased, so did the influence of Ca(2+) ions on rGO stability. Critical coagulation concentrations (CCC) of GO, rGO-1h, and rGO-2h were determined to be ∼ 200 mM, 35 mM, and 30 mM NaCl, respectively. In the presence of CaCl2, CCC values of GO and rGO are quite similar, however. Long-term studies show that a significant amount of rGO-1h and rGO-2h remain stable in Calls Creek surface water, while effluent wastewater readily destabilizes rGO. In the presence NOM and divalent cations (Ca(2+), Mg(2+)), GO aggregates settle from suspension due to GO functional group bridging with NOM and divalent ions. However, rGO-1h and rGO-2h remain suspended due to their lower functional group concentration and resultant reduced NOM-divalent cation bridging. Overall, pH, divalent cations, and NOM can play complex roles in the fate of rGO and GO.


Environmental Science & Technology | 2014

Deposition and release of graphene oxide nanomaterials using a quartz crystal microbalance

Indranil Chowdhury; Matthew C. Duch; Nikhita D. Mansukhani; Mark C. Hersam; Dermont Bouchard

Interactions of graphene oxide (GO) with silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Both GO deposition and release were monitored on silica- and poly-l-lysine (PLL) coated surfaces as a function of GO concentration and in NaCl, CaCl2, and MgCl2 as a function of ionic strength (IS). Under favorable conditions (PLL-coated positive surface), GO deposition rates increased with GO concentration, as expected from colloidal theory. Increased NaCl concentration resulted in a greater deposition attachment efficiency of GO on the silica surface, indicating that deposition of GO follows Derjaguin-Landau-Verwey-Overbeek (DLVO) theory; GO deposition rates decreased at high IS, however, due to large aggregate formation. GO critical deposition concentration (CDC) on the silica surface is determined to be 40 mM NaCl which is higher than the reported CDC values of fullerenes and lower than carbon nanotubes. A similar trend is observed for MgCl2 which has a CDC value of 1.2 mM MgCl2. Only a minimal amount of GO (frequency shift <2 Hz) was deposited on the silica surface in CaCl2 due to the bridging ability of Ca(2+) ions with GO functional groups. Significant GO release from silica surface was observed after adding deionized water, indicating that GO deposition is reversible. The release rates of GO were at least 10-fold higher than the deposition rates under similar conditions indicating potential high release and mobility of GO in the environment. Under favorable conditions, a significant amount of GO was released which indicates potential multilayer GO deposition. However, a negligible amount of deposited GO was released in CaCl2 under favorable conditions due to the binding of GO layers with Ca(2+) ions. Release of GO was significantly dependent on salt type with an overall trend of NaCl > MgCl2 > CaCl2.


ACS Nano | 2015

Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials

Xiang Wang; Matthew C. Duch; Nikhita D. Mansukhani; Zhaoxia Ji; Yu Pei Liao; Meiying Wang; Haiyuan Zhang; Bingbing Sun; Chong Hyun Chang; Ruibin Li; Sijie Lin; Huan Meng; Tian Xia; Mark C. Hersam; Andre E. Nel

Engineered carbonaceous nanomaterials (ECNs), including single-wall carbon nanotubes (SWCNTs), multiwall carbon nanotubes (MWCNTs), graphene, and graphene oxide (GO), are potentially hazardous to the lung. With incremental experience in the use of predictive toxicological approaches, seeking to relate ECN physicochemical properties to adverse outcome pathways (AOPs), it is logical to explore the existence of a common AOP that allows comparative analysis of broad ECN categories. We established an ECN library comprising three different types of SWCNTs, graphene, and graphene oxide (two sizes) for comparative analysis according to a cell-based AOP that also plays a role in the pathogenesis of pulmonary fibrosis. SWCNTs synthesized by Hipco, arc discharge and Co-Mo catalyst (CoMoCAT) methods were obtained in their as-prepared (AP) state, following which they were further purified (PD) or coated with Pluronic F108 (PF108) or bovine serum albumin (BSA) to improve dispersal and colloidal stability. GO was prepared as two sizes, GO-small (S) and GO-large (L), while the graphene samples were coated with BSA and PF108 to enable dispersion in aqueous solution. In vitro screening showed that AP- and PD-SWCNTs, irrespective of the method of synthesis, as well as graphene (BSA) and GO (S and L) could trigger interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) production in myeloid (THP-1) and epithelial (BEAS-2B) cell lines, respectively. Oropharyngeal aspiration in mice confirmed that AP-Hipco tubes, graphene (BSA-dispersed), GO-S and GO-L could induce IL-1β and TGF-β1 production in the lung in parallel with lung fibrosis. Notably, GO-L was the most pro-fibrogenic material based on rapid kinetics of pulmonary injury. In contrast, PF108-dispersed SWCNTs and -graphene failed to exert fibrogenic effects. Collectively, these data indicate that the dispersal state and surface reactivity of ECNs play key roles in triggering a pro-fibrogenic AOP, which could prove helpful for hazard ranking and a proposed tiered testing approach for large ECN categories.


Environmental Science & Technology | 2014

Interactions of Graphene Oxide Nanomaterials with Natural Organic Matter and Metal Oxide Surfaces

Indranil Chowdhury; Matthew C. Duch; Nikhita D. Mansukhani; Mark C. Hersam; Dermont Bouchard

Interactions of graphene oxide (GO) nanomaterials with natural organic matter (NOM) and metal oxide surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Three different types of NOM were studied: Suwannee River humic and fulvic acids (SRHA and SRFA) and alginate. Aluminum oxide surface was used as a model metal oxide surface. Deposition trends show that GO has the highest attachment on alginate, followed by SRFA, SRHA, and aluminum oxide surfaces, and that GO displayed higher interactions with all investigated surfaces than with silica. Deposition and release behavior of GO on aluminum oxide surface is very similar to positively charged poly-L-lysine-coated surface. Higher interactions of GO with NOM-coated surfaces are attributed to the hydroxyl, epoxy, and carboxyl functional groups of GO; higher deposition on alginate-coated surfaces is attributed to the rougher surface created by the extended conformation of the larger alginate macromolecules. Both ionic strength (IS) and ion valence (Na(+) vs Ca(2+)) had notable impact on interactions of GO with different environmental surfaces. Due to charge screening, increased IS resulted in greater deposition for NOM-coated surfaces. Release behavior of deposited GO varied significantly between different environmental surfaces. All surfaces showed significant release of deposited GO upon introduction of low IS water, indicating that deposition of GO on these surfaces is reversible. Release of GO from NOM-coated surfaces decreased with IS due to charge screening. Release rates of deposited GO from alginate-coated surface were significantly lower than from SRHA and SRFA-coated surfaces due to trapping of GO within the rough surface of the alginate layer.


ACS Nano | 2014

Graphene Oxide Enhances Cellular Delivery of Hydrophilic Small Molecules by Co-incubation

Andy H. Hung; Robert J. Holbrook; Matthew W. Rotz; Cameron J. Glasscock; Nikhita D. Mansukhani; Keith W. MacRenaris; Lisa M. Manus; Matthew C. Duch; Kevin T. Dam; Mark C. Hersam; Thomas J. Meade

The delivery of bioactive molecules into cells has broad applications in biology and medicine. Polymer-modified graphene oxide (GO) has recently emerged as a de facto noncovalent vehicle for hydrophobic drugs. Here, we investigate a different approach using native GO to deliver hydrophilic molecules by co-incubation in culture. GO adsorption and delivery were systematically studied with a library of 15 molecules synthesized with Gd(III) labels to enable quantitation. Amines were revealed to be a key chemical group for adsorption, while delivery was shown to be quantitatively predictable by molecular adsorption, GO sedimentation, and GO size. GO co-incubation was shown to enhance delivery by up to 13-fold and allowed for a 100-fold increase in molecular incubation concentration compared to the alternative of nanoconjugation. When tested in the application of Gd(III) cellular MRI, these advantages led to a nearly 10-fold improvement in sensitivity over the state-of-the-art. GO co-incubation is an effective method of cellular delivery that is easily adoptable by researchers across all fields.


ACS Nano | 2016

Identification and Optimization of Carbon Radicals on Hydrated Graphene Oxide for Ubiquitous Antibacterial Coatings

Ruibin Li; Nikhita D. Mansukhani; Linda M. Guiney; Zhaoxia Ji; Yichao Zhao; Chong Hyun Chang; Christopher T. French; Jeff F. Miller; Mark C. Hersam; Andre E. Nel; Tian Xia

While the antibacterial properties of graphene oxide (GO) have been demonstrated across a spectrum of bacteria, the critical role of functional groups is unclear. To address this important issue, we utilized reduction and hydration methods to establish a GO library with different oxidation, hydroxyl, and carbon radical (•C) levels that can be used to study the impact on antibacterial activity. Using antibiotic-resistant bacteria as a test platform, we found that the •C density is most proximately associated with bacterial killing. Accordingly, hydrated GO (hGO), with the highest •C density, had the strongest antibacterial effects through membrane binding and induction of lipid peroxidation. To explore its potential applications, we demonstrated that coating of catheter and glass surfaces with hGO is capable of killing drug-resistant bacteria. In summary, •C is the principle surface moiety that can be utilized for clinical applications of GO-based antibacterial coatings.


Small | 2015

Differences in the Toxicological Potential of 2D versus Aggregated Molybdenum Disulfide in the Lung

Xiang Wang; Nikhita D. Mansukhani; Linda M. Guiney; Zhaoxia Ji; Chong Hyun Chang; Meiying Wang; Yu Pei Liao; Tze-Bin Song; Bingbing Sun; Ruibin Li; Tian Xia; Mark C. Hersam; Andre E. Nel

2D molybdenum disulfide (MoS2 ) has distinct optical and electronic properties compared to aggregated MoS2 , enabling wide use of these materials for electronic and biomedical applications. However, the hazard potential of MoS2 has not been studied extensively. Here, a comprehensive analysis of the pulmonary hazard potential of three aqueous suspended forms of MoS2 -aggregated MoS2 (Agg-MoS2 ), MoS2 exfoliated by lithiation (Lit-MoS2 ), and MoS2 dispersed by Pluronic F87 (PF87-MoS2 )-is presented. No cytotoxicity is detected in THP-1 and BEAS-2B cell lines. However, Agg-MoS2 induces strong proinflammatory and profibrogenic responses in vitro. In contrast, Lit- and PF87-MoS2 have little or no effect. In an acute toxicity study in mice, Agg-MoS2 induces acute lung inflammation, while Lit-MoS2 and PF87-MoS2 have little or no effect. In a subchronic study, there is no evidence of pulmonary fibrosis in response to all forms of MoS2 . These data suggest that exfoliation attenuates the toxicity of Agg-MoS2 , which is an important consideration toward the safety evaluation and use of nanoscale MoS2 materials for industrial and biological applications.


Small | 2016

High-Concentration Aqueous Dispersions of Nanoscale 2D Materials Using Nonionic, Biocompatible Block Copolymers.

Nikhita D. Mansukhani; Linda M. Guiney; Peter J. Kim; Yichao Zhao; Diego Alducin; Arturo Ponce; Eduardo Larios; Miguel José Yacamán; Mark C. Hersam

Conditions for the dispersion of molybdenum disulfide (MoS2) in aqueous solution at concentrations up to 0.12 mg mL(-1) using a range of nonionic, biocompatible block copolymers (i.e., Pluronics and Tetronics) are identified. Furthermore, the optimal Pluronic dispersant for MoS2 is found to be effective for a range of other 2D materials such as molybdenum diselenide, tungsten diselenide, tungsten disulfide, tin selenide, and boron nitride.


ACS Nano | 2016

Toxicological Profiling of Highly Purified Metallic and Semiconducting Single-Walled Carbon Nanotubes in the Rodent Lung and E. coli

Xiang Wang; Nikhita D. Mansukhani; Linda M. Guiney; Jae Hyeok Lee; Ruibin Li; Bingbing Sun; Yu Pei Liao; Chong Hyun Chang; Zhaoxia Ji; Tian Xia; Mark C. Hersam; Andre E. Nel

The electronic properties of single-walled carbon nanotubes (SWCNTs) are potentially useful for electronics, optics, and sensing applications. Depending on the chirality and diameter, individual SWCNTs can be classified as semiconducting (S-SWCNT) or metallic (M-SWCNT). From a biological perspective, the hazard profiling of purified metallic versus semiconducting SWCNTs has been pursued only in bacteria, with the conclusion that aggregated M-SWCNTs are more damaging to bacterial membranes than S-SWCNTs. However, no comparative studies have been performed in a mammalian system, where most toxicity studies have been undertaken using relatively crude SWCNTs that include a M:S mix at 1:2 ratio. In order to compare the toxicological impact of SWCNTs sorted to enrich them for each of the chirality on pulmonary cells and the intact lung, we used density gradient ultracentrifugation and extensive rinsing to prepare S- and M-SWCNTs that are >98% purified. In vitro screening showed that both tube variants trigger similar amounts of interleukin 1β (IL-1β) and transforming growth factor (TGF-β1) production in THP-1 and BEAS-2B cells, without cytotoxicity. Oropharyngeal aspiration confirmed that both SWCNT variants induce comparable fibrotic effects in the lung and abundance of IL-1β and TGF-β1 release in the bronchoalveolar lavage fluid. There was also no change in the morphology, membrane integrity, and viability of E. coli, in contradistinction to the previously published effects of aggregated tubes on the bacterial membrane. Collectively, these data indicate that the electronic properties and chirality do not independently impact SWCNT toxicological impact in the lung, which is of significance to the safety assessment and incremental use of purified tubes by industry.

Collaboration


Dive into the Nikhita D. Mansukhani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andre E. Nel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dermont Bouchard

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Indranil Chowdhury

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Ruibin Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Tian Xia

University of California

View shared research outputs
Top Co-Authors

Avatar

Zhaoxia Ji

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge