Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niklas Andersson is active.

Publication


Featured researches published by Niklas Andersson.


Endocrinology | 2009

Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice.

Ulrika E.A. Mårtensson; S Albert Salehi; Sara H. Windahl; Maria F. Gomez; Karl Swärd; Joanna Daszkiewicz-Nilsson; A. Wendt; Niklas Andersson; Per Hellstrand; Per-Olof Grände; Christer Owman; Clifford J. Rosen; Martin L. Adamo; Ingmar Lundquist; Patrik Rorsman; Bengt-Olof Nilsson; Claes Ohlsson; Björn Olde; L. M. Fredrik Leeb-Lundberg

In vitro studies suggest that the G protein-coupled receptor (GPR) 30 is a functional estrogen receptor. However, the physiological role of GPR30 in vivo is unknown, and it remains to be determined whether GPR30 is an estrogen receptor also in vivo. To this end, we studied the effects of disrupting the GPR30 gene in female and male mice. Female GPR30((-/-)) mice had hyperglycemia and impaired glucose tolerance, reduced body growth, increased blood pressure, and reduced serum IGF-I levels. The reduced growth correlated with a proportional decrease in skeletal development. The elevated blood pressure was associated with an increased vascular resistance manifested as an increased media to lumen ratio of the resistance arteries. The hyperglycemia and impaired glucose tolerance in vivo were associated with decreased insulin expression and release in vivo and in vitro in isolated pancreatic islets. GPR30 is expressed in islets, and GPR30 deletion abolished estradiol-stimulated insulin release both in vivo in ovariectomized adult mice and in vitro in isolated islets. Our findings show that GPR30 is important for several metabolic functions in female mice, including estradiol-stimulated insulin release.


Journal of Bone and Mineral Research | 2005

Free testosterone is a positive, whereas free estradiol is a negative, predictor of cortical bone size in young Swedish men: the GOOD study.

Mattias Lorentzon; Charlotte Swanson; Niklas Andersson; Dan Mellström; Claes Ohlsson

In this study, we evaluated the predictive roles of sex steroids for skeletal parameters in young men (n = 1068) at the age of peak bone mass. Serum free estradiol was a negative predictor, whereas free testosterone and SHBG were positive predictors of cortical bone size.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Differential effects on bone of estrogen receptor α and androgen receptor activation in orchidectomized adult male mice

Sofia Movérare; Katrien Venken; Anna-Lena Eriksson; Niklas Andersson; Stanko Skrtic; Jon E. Wergedal; Subburaman Mohan; Phil Salmon; Roger Bouillon; Jan Åke Gustafsson; Dirk Vanderschueren; Claes Ohlsson

Androgens may regulate the male skeleton either directly by stimulation of the androgen receptor (AR) or indirectly by aromatization of androgens into estrogens and, thereafter, by stimulation of the estrogen receptors (ERs). To directly compare the effect of ER activation on bone in vivo with the effect of AR activation, 9-month-old orchidectomized wild-type and ER-inactivated mice were treated with the nonaromatizable androgen 5α-dihydrotestosterone, 17β-estradiol, or vehicle. Both ERα and AR but not ERβ activation preserved the amount of trabecular bone. ERα activation resulted both in a preserved thickness and number of trabeculae. In contrast, AR activation exclusively preserved the number of trabeculae, whereas the thickness of the trabeculae was unaffected. Furthermore, the effects of 17β-estradiol could not be mediated by the AR, and the effects of 5α-dihydrotestosterone were increased rather than decreased in ER-inactivated mice. ERα, but not AR or ERβ, activation resulted in preserved thickness, volumetric density, and mechanical strength of the cortical bone. ERα activation increased serum levels of insulin-like growth factor I, which were positively correlated with all the cortical and trabecular bone parameters that were specifically preserved by ERα activation but not by AR activation, suggesting that insulin-like growth factor I might mediate these effects of ERα activation. Thus, the in vivo bone-sparing effect of ERα activation is distinct from the bone-sparing effect of AR activation in adult male mice. Because these two pathways are clearly distinct from each other, one may speculate that a combined treatment of selective ER modulators and selective AR modulators might be beneficial in the treatment of osteoporosis.


American Journal of Physiology-endocrinology and Metabolism | 2009

The role of the G protein-coupled receptor GPR30 in the effects of estrogen in ovariectomized mice

Sara H. Windahl; Niklas Andersson; Andrei S. Chagin; Ulrika E.A. Mårtensson; Hans Carlsten; Björn Olde; Charlotte Swanson; Sofia Movérare-Skrtic; Lars Sävendahl; Marie K Lagerquist; L. M. F. Leeb-Lundberg; Claes Ohlsson

In vitro studies suggest that the membrane G protein-coupled receptor GPR30 is a functional estrogen receptor (ER). The aim of the present study was to determine the possible in vivo role of GPR30 as a functional ER primarily for the regulation of skeletal parameters, including bone mass and longitudinal bone growth, but also for some other well-known estrogen-regulated parameters, including uterine weight, thymus weight, and fat mass. Three-month-old ovariectomized (OVX) GPR30-deficient mice (GPR30(-/-)) and wild-type (WT) mice were treated with either vehicle or increasing doses of estradiol (E(2); 0, 30, 70, 160, or 830 ng.mouse(-1).day(-1)). Body composition [bone mineral density (BMD), fat mass, and lean mass] was analyzed by dual-energy-X ray absorptiometry, while the cortical and trabecular bone compartments were analyzed by peripheral quantitative computerized tomography. Quantitative histological analyses were performed in the distal femur growth plate. Bone marrow cellularity and distribution were analyzed using a fluorescence-activated cell sorter. The estrogenic responses on most of the investigated parameters, including increase in bone mass (total body BMD, spine BMD, trabecular BMD, and cortical bone thickness), increase in uterine weight, thymic atrophy, fat mass reduction, and increase in bone marrow cellularity, were similar for all of the investigated E(2) doses in WT and GPR30(-/-) mice. On the other hand, E(2) treatment reduced longitudinal bone growth, reflected by decreased femur length and distal femur growth plate height, in the WT mice but not in the GPR30(-/-) mice compared with vehicle-treated mice. These in vivo findings demonstrate that GPR30 is not required for normal estrogenic responses on several major well-known estrogen-regulated parameters. In contrast, GPR30 is required for a normal estrogenic response in the growth plate.


Journal of Bone and Mineral Research | 2003

Estrogen Receptor-β Inhibits Skeletal Growth and Has the Capacity to Mediate Growth Plate Fusion in Female Mice†

Andrei S. Chagin; Marie K. Lindberg; Niklas Andersson; Sofia Movérare; Jan-Åke Gustafsson; Lars Sävendahl; Claes Ohlsson

To determine the long‐term role of ERβ in the regulation of longitudinal bone growth, appendicular and axial skeletal growth was followed and compared in female ERβ−/−, ERα−/−, and ERα−/−β−/− mice. Our results show that ERβ inhibits appendicular and axial skeletal growth and has the capacity to induce fusion of the growth plates.


PLOS ONE | 2009

Mice Chronically Fed High-Fat Diet Have Increased Mortality and Disturbed Immune Response in Sepsis

Louise Strandberg; Margareta Verdrengh; Maria Enge; Niklas Andersson; Sylvie Amu; Karin Önnheim; Anna Benrick; Mikael Brisslert; Johan Bylund; Maria Bokarewa; Staffan Nilsson; John-Olov Jansson

Background Sepsis is a potentially deadly disease that often is caused by gram-positive bacteria, in particular Staphylococcus aureus (S. aureus). As there are few effective therapies for sepsis, increased basic knowledge about factors predisposing is needed. Methodology/Principal Findings The purpose of this study was to study the effect of Western diet on mortality induced by intravenous S. aureus inoculation and the immune functions before and after bacterial inoculation. Here we show that C57Bl/6 mice on high-fat diet (HFD) for 8 weeks, like genetically obese Ob/Ob mice on low-fat diet (LFD), have increased mortality during S. aureus-induced sepsis compared with LFD-fed C57Bl/6 controls. Bacterial load in the kidneys 5–7 days after inoculation was increased 10-fold in HFD-fed compared with LFD-fed mice. At that time, HFD-fed mice had increased serum levels and fat mRNA expression of the immune suppressing cytokines interleukin-1 receptor antagonist (IL-1Ra) and IL-10 compared with LFD-fed mice. In addition, HFD-fed mice had increased serum levels of the pro-inflammatory IL-1β. Also, HFD-fed mice with and without infection had increased levels of macrophages in fat. The proportion and function of phagocytosing granulocytes, and the production of reactive oxygen species (ROS) by peritoneal lavage cells were decreased in HFD-fed compared with LFD-fed mice. Conclusions Our findings imply that chronic HFD disturb several innate immune functions in mice, and impairs the ability to clear S. aureus and survive sepsis.


Obesity | 2006

Dihydrotestosterone Treatment Results in Obesity and Altered Lipid Metabolism in Orchidectomized Mice

Sofia Movérare-Skrtic; Katrien Venken; Niklas Andersson; Marie K. Lindberg; Johan Svensson; Charlotte Swanson; Dirk Vanderschueren; Jan Oscarsson; Jan Åke Gustafsson; Claes Ohlsson

Objective: To determine the role of androgen receptor (AR) activation for adipose tissue metabolism. Sex steroids are important regulators of adipose tissue metabolism in men. Androgens may regulate the adipose tissue metabolism in men either directly by stimulation of the AR or indirectly by aromatization of androgens into estrogens and, thereafter, by stimulation of the estrogen receptors. Previous studies have shown that estrogen receptor α stimulation results in reduced fat mass in men.


Journal of Bone and Mineral Research | 2009

Elevated Aromatase Expression in Osteoblasts Leads to Increased Bone Mass Without Systemic Adverse Effects

Klara Sjögren; Marie K Lagerquist; Sofia Movérare-Skrtic; Niklas Andersson; Sara H. Windahl; Charlotte Swanson; Subburaman Mohan; Matti Poutanen; Claes Ohlsson

The stimulatory effects of testosterone (T) on bone can either be through a direct activation of the androgen receptor (AR) or mediated through aromatization of T to estradiol (E2), followed by activation of estrogen receptors (ERs) in bone. Aromatase expression in osteoblasts and reproductive tissues is dependent on different promoters, which are differentially regulated. To study the effect of elevated local aromatization of T to E2 in bone, we developed a transgenic mouse model (Coll‐1α1‐Arom) that overexpresses the human aromatase gene under the control of the osteoblast specific rat type I α I procollagen promoter. The Coll‐1α1‐Arom mice expressed human aromatase mRNA specifically in bone and had unaffected serum E2 and T levels. Male Coll‐1α1‐Arom mice had clearly increased total body BMD, trabecular BMD, cortical BMD, and cortical thickness associated with elevated osteoprotegerin mRNA levels and reduced number of osteoclasts (p < 0.01). Treatment of ovariectomized mice with T increased cortical and trabecular thickness in the Coll‐1α1‐Arom mice (p < 0.001) but not in the wildtype mice. In conclusion, elevated aromatase expression specifically in osteoblasts results in stimulatory estrogenic effects in bone without increasing serum E2 levels. Because osteoblast‐specific aromatase expression results in an increased ER to AR activation ratio in bone, we propose that activation of ERs results in a more pronounced increase in bone mass than what is seen after activation of the AR. Development of osteoblast‐specific inducers of aromatase expression might identify substances with stimulatory effects on bone without systemic adverse effects.


Acta Orthopaedica Scandinavica | 2001

Comparison of osteopenia after gastrectomy, ovariectomy and prednisolone treatment in the young female rat.

Vikas Surve; Niklas Andersson; D Lehto-Axtelius; R. Håkanson

Rat models of osteopenia include ovariectomy and long-term glucocorticoid treatment. Although ovariectomy produces significant trabecular bone loss after 2 weeks, long-term glucocorticoid treatment has been reported to cause osteopenia in some studies but not in others. In the present 8-week-study, we compared the osteopenia associated with gastrectomy (GX) to that induced by ovariectomy (OVX) or prednisolone (PRE) treatment. Female Sprague-Dawley rats (10 weeks old) were subjected to GX, OVX, PRE treatment or SHAM operation. At the end of the study, calvariae, femurs and fifth lumbar vertebrae (L5) were collected and subjected to bone density measurement (femur and L5), transillumination (calvaria) and histomorphometry (calvaria and femur). Bone density was reduced in L5 and the distal femur in the OVX and GX groups, but not in the PRE group. Transillumination of the calvaria showed marked bone loss in the GX rats, but not in the other groups. Morphometric analysis of the femur revealed reduced trabecular bone volume, trabecular thickness, trabecular number and osteoclast number, but increased osteoclast surface (expressed as per cent of the trabecular bone surface covered by osteoclasts) in the GX and OVX rats. The PRE rats seemed unaffected. Cortical thickness was reduced in the GX rats, but not in the other groups. The findings indicate that GX induces osteopenia in, e.g., femur and vertebra of a magnitude similar to or greater than that induced by OVX, while at the same time inducing osteopenia in the calvaria. Although osteoclast activation seems to contribute, the precise mechanism underlying the GX-evoked osteopenia remains obscure.


PLOS ONE | 2011

Liver-derived IGF-I regulates mean life span in mice.

Johan Svensson; Klara Sjögren; Jenny Fäldt; Niklas Andersson; Olle Isaksson; John-Olov Jansson; Claes Ohlsson

Background Transgenic mice with low levels of global insulin-like growth factor-I (IGF-I) throughout their life span, including pre- and postnatal development, have increased longevity. This study investigated whether specific deficiency of liver-derived, endocrine IGF-I is of importance for life span. Methods and Findings Serum IGF-I was reduced by approximately 80% in mice with adult, liver-specific IGF-I inactivation (LI-IGF-I-/- mice), and body weight decreased due to reduced body fat. The mean life span of LI-IGF-I-/- mice (nu200a=u200a84) increased 10% vs. control mice (nu200a=u200a137) (Coxs test, p<0.01), mainly due to increased life span (16%) of female mice [LI-IGF-I-/- mice (nu200a=u200a31): 26.7±1.1 vs. control (nu200a=u200a67): 23.0±0.7 months, p<0.001]. Male LI-IGF-I-/- mice showed only a tendency for increased longevity (pu200a=u200a0.10). Energy expenditure, measured as oxygen consumption during and after submaximal exercise, was increased in the LI-IGF-I-/- mice. Moreover, microarray and RT-PCR analyses showed consistent regulation of three genes (heat shock protein 1A and 1B and connective tissue growth factor) in several body organs in the LI-IGF-I-/- mice. Conclusions Adult inactivation of liver-derived, endocrine IGF-I resulted in moderately increased mean life span. Body weight and body fat decreased in LI-IGF-I-/- mice, possibly due to increased energy expenditure during exercise. Genes earlier reported to modulate stress response and collagen aging showed consistent regulation, providing mechanisms that could underlie the increased mean life span in the LI-IGF-I-/- mice.

Collaboration


Dive into the Niklas Andersson's collaboration.

Top Co-Authors

Avatar

Claes Ohlsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Charlotte Swanson

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Johan Svensson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Marie K. Lindberg

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Carlsten

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Dirk Vanderschueren

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Katrien Venken

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge