Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niklas Schneider is active.

Publication


Featured researches published by Niklas Schneider.


Geophysical Research Letters | 2008

North Pacific Gyre Oscillation links ocean climate and ecosystem change

E. Di Lorenzo; Niklas Schneider; Kim M. Cobb; Peter J. S. Franks; K. Chhak; Arthur J. Miller; James C. McWilliams; Steven J. Bograd; Hernan G. Arango; Enrique N. Curchitser; Thomas M. Powell; Pascal Rivière

Decadal fluctuations in salinity, nutrients, chlorophyll, a variety of zooplankton taxa, and fish stocks in the Northeast Pacific are often poorly correlated with the most widely-used index of large-scale climate variability in the region - the Pacific Decadal Oscillation (PDO). We define a new pattern of climate change, the North Pacific Gyre Oscillation (NPGO) and show that its variability is significantly correlated with previously unexplained fluctuations of salinity, nutrients and chlorophyll. Fluctuations in the NPGO are driven by regional and basin-scale variations in wind-driven upwelling and horizontal advection - the fundamental processes controlling salinity and nutrient concentrations. Nutrient fluctuations drive concomitant changes in phytoplankton concentrations, and may force similar variability in higher trophic levels. The NPGO thus provides a strong indicator of fluctuations in the mechanisms driving planktonic ecosystem dynamics. The NPGO pattern extends beyond the North Pacific and is part of a global-scale mode of climate variability that is evident in global sea level trends and sea surface temperature. Therefore the amplification of the NPGO variance found in observations and in global warming simulations implies that the NPGO may play an increasingly important role in forcing global-scale decadal changes in marine ecosystems.


Journal of Climate | 2005

The Forcing of the Pacific Decadal Oscillation

Niklas Schneider; Bruce D. Cornuelle

The Pacific decadal oscillation (PDO), defined as the leading empirical orthogonal function of North Pacific sea surface temperature anomalies, is a widely used index for decadal variability. It is shown that the PDO can be recovered from a reconstruction of North Pacific sea surface temperature anomalies based on a first-order autoregressive model and forcing by variability of the Aleutian low, El Nino–Southern Oscillation (ENSO), and oceanic zonal advection anomalies in the Kuroshio–Oyashio Extension. The latter results from oceanic Rossby waves that are forced by North Pacific Ekman pumping. The SST response patterns to these processes are not orthogonal, and they determine the spatial characteristics of the PDO. The importance of the different forcing processes is frequency dependent. At interannual time scales, forcing from ENSO and the Aleutian low determines the response in equal parts. At decadal time scales, zonal advection in the Kuroshio–Oyashio Extension, ENSO, and anomalies of the Aleutian low each account for similar amounts of the PDO variance. These results support the hypothesis that the PDO is not a dynamical mode, but arises from the superposition of sea surface temperature fluctuations with different dynamical origins.


Bulletin of the American Meteorological Society | 2015

Understanding ENSO Diversity

Andrew T. Wittenberg; Matthew Newman; Emanuele Di Lorenzo; Jin-Yi Yu; Pascale Braconnot; Julia Cole; Boris Dewitte; Benjamin S. Giese; Eric Guilyardi; Fei-Fei Jin; Kristopher B. Karnauskas; Benjamin Kirtman; Tong Lee; Niklas Schneider; Yan Xue; Sang Wook Yeh

El Nino–Southern Oscillation (ENSO) is a naturally occurring mode of tropical Pacific variability, with global impacts on society and natural ecosystems. While it has long been known that El Nino events display a diverse range of amplitudes, triggers, spatial patterns, and life cycles, the realization that ENSO’s impacts can be highly sensitive to this event-to-event diversity is driving a renewed interest in the subject. This paper surveys our current state of knowledge of ENSO diversity, identifies key gaps in understanding, and outlines some promising future research directions.


Journal of Climate | 2002

Anatomy of North Pacific Decadal Variability

Niklas Schneider; Arthur J. Miller; David W. Pierce

Abstract A systematic analysis of North Pacific decadal variability in a full-physics coupled ocean–atmosphere model is executed. The model is an updated and improved version of the coupled model studied by Latif and Barnett. Evidence is sought for determining the details of the mechanism responsible for the enhanced variance of some variables at 20–30-yr timescales. The possible mechanisms include a midlatitude gyre ocean–atmosphere feedback loop, stochastic forcing, remote forcing, or sampling error. Decadal variability in the model is expressed most prominently in anomalies of upper-ocean streamfunction, sea surface temperature (SST), and latent surface heat flux in the Kuroshio–Oyashio extension (KOE) region off Japan. The decadal signal off Japan is initiated by changes in strength and position of the Aleutian low. The atmospheric perturbations excite SST anomalies in the central and eastern North Pacific (with opposing signs and canonical structure). The atmospheric perturbations also change the Ekm...


Journal of Physical Oceanography | 1999

Subduction of Decadal North Pacific Temperature Anomalies: Observations and Dynamics

Niklas Schneider; Arthur J. Miller; Michael A. Alexander; Clara Deser

Abstract Observations of oceanic temperature in the upper 400 m reveal decadal signals that propagate in the thermocline along lines of constant potential vorticity from the ventilation region in the central North Pacific to approximately 18°N in the western Pacific. The propagation path and speed are well described by the geostrophic mean circulation and by a model of the ventilated thermocline. The approximate southward speed of the thermal signal of 7 mm s−1 yields a transit time of approximately eight years. The thermal anomalies appear to be forced by perturbations of the mixed layer heat budget in the subduction region of the central North Pacific east of the date line. A warm pulse was generated in the central North Pacific by a series of mild winters from 1973 to 1976 and reached 18°N around 1982. After 1978 a succession of colder winters initiated a cold anomaly in the central North Pacific that propagated along a similar path and with a similar speed as the warm anomaly, then arrived in the west...


Journal of Climate | 2016

The Pacific Decadal Oscillation, Revisited

Matthew Newman; Michael A. Alexander; Toby R. Ault; Kim M. Cobb; Clara Deser; Emanuele Di Lorenzo; Nathan J. Mantua; Arthur J. Miller; Shoshiro Minobe; Hisashi Nakamura; Niklas Schneider; Daniel J. Vimont; Adam S. Phillips; James D. Scott; Catherine A. Smith

AbstractThe Pacific decadal oscillation (PDO), the dominant year-round pattern of monthly North Pacific sea surface temperature (SST) variability, is an important target of ongoing research within the meteorological and climate dynamics communities and is central to the work of many geologists, ecologists, natural resource managers, and social scientists. Research over the last 15 years has led to an emerging consensus: the PDO is not a single phenomenon, but is instead the result of a combination of different physical processes, including both remote tropical forcing and local North Pacific atmosphere–ocean interactions, which operate on different time scales to drive similar PDO-like SST anomaly patterns. How these processes combine to generate the observed PDO evolution, including apparent regime shifts, is shown using simple autoregressive models of increasing spatial complexity. Simulations of recent climate in coupled GCMs are able to capture many aspects of the PDO, but do so based on a balance of ...


Journal of Climate | 2001

Low-Frequency Modulation of the ENSO-Indian Monsoon Rainfall Relationship: Signal or Noise?

Alexander Gershunov; Niklas Schneider; Tim P. Barnett

Abstract Running correlations between pairs of stochastic time series are typically characterized by low-frequency evolution. This simple result of sampling variability holds for climate time series but is not often recognized for being merely noise. As an example, this paper discusses the historical connection between El Nino–Southern Oscillation (ENSO) and average Indian rainfall (AIR). Decades of strong correlation (∼−0.8) alternate with decades of insignificant correlation, and it is shown that this decadal modulation could be due solely to stochastic processes. In fact, the specific relationship between ENSO and AIR is significantly less variable on decadal timescales than should be expected from sampling variability alone.


Journal of Physical Oceanography | 2005

The Warming of the California Current System: Dynamics and Ecosystem Implications

Emanuele Di Lorenzo; Arthur J. Miller; Niklas Schneider; James C. McWilliams

Abstract Long-term changes in the observed temperature and salinity along the southern California coast are studied using a four-dimensional space–time analysis of the 52-yr (1949–2000) California Cooperative Oceanic Fisheries Investigations (CalCOFI) hydrography combined with a sensitivity analysis of an eddy-permitting primitive equation ocean model under various forcing scenarios. An overall warming trend of 1.3°C in the ocean surface, a deepening in the depth of the mean thermocline (18 m), and increased stratification between 1950 and 1999 are found to be primarily forced by large-scale decadal fluctuations in surface heat fluxes combined with horizontal advection by the mean currents. After 1998 the surface heat fluxes suggest the beginning of a period of cooling, consistent with colder observed ocean temperatures. Salinity changes are decoupled from temperature and appear to be controlled locally in the coastal ocean by horizontal advection by anomalous currents. A cooling trend of –0.5°C in SST is...


Journal of Climate | 2007

Decadal Variability of the Kuroshio Extension: Observations and an Eddy-Resolving Model Hindcast*

Bunmei Taguchi; Shang-Ping Xie; Niklas Schneider; Masami Nonaka; Hideharu Sasaki; Yoshikazu Sasai

Abstract Low-frequency variability of the Kuroshio Extension (KE) is studied using observations and a multidecadal (1950–2003) hindcast by a high-resolution (0.1°), eddy-resolving, global ocean general circulation model for the Earth Simulator (OFES). In both the OFES hindcast and satellite altimeter observations, low-frequency sea surface height (SSH) variability in the North Pacific is high near the KE front. An empirical orthogonal function (EOF) analysis indicates that much of the SSH variability in the western North Pacific east of Japan is explained by two modes with meridional structures tightly trapped along the KE front. The first mode represents a southward shift and to a lesser degree, an acceleration of the KE jet associated with the 1976/77 shift in basin-scale winds. The second mode reflects quasi-decadal variations in the intensity of the KE jet. Both the spatial structure and time series of these modes derived from the hindcast are in close agreement with observations. A linear Rossby wave...


Journal of Climate | 1998

The Indonesian Throughflow and the Global Climate System

Niklas Schneider

Abstract The role of the Indonesian Throughflow in the global climate system is investigated with a coupled ocean–atmosphere model by contrasting simulations with realistic throughflow and closed Indonesian passages. The Indonesian Throughflow affects the oceanic circulation and thermocline depth around Australia and in the Indian Ocean as described in previous studies and explained by Sverdrup transports. An open throughflow thereby increases surface temperatures in the eastern Indian ocean, reduces temperatures in the equatorial Pacific, and shifts the warm pool and centers of deep convection in the atmosphere to the west. This control on sea surface temperature and deep convection affects atmospheric pressure in the entire Tropics and, via atmospheric teleconnections, in the midlatitudes. As a result, surface wind stress in the entire Tropics changes and meridional and zonal gradients of the tropical thermocline and associated currents increase in the Pacific and decrease in the Indian Ocean. The respo...

Collaboration


Dive into the Niklas Schneider's collaboration.

Top Co-Authors

Avatar

Bunmei Taguchi

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Qiu

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Masami Nonaka

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Emanuele Di Lorenzo

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hideharu Sasaki

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tim P. Barnett

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar

E. Di Lorenzo

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge