Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niklas Schultz is active.

Publication


Featured researches published by Niklas Schultz.


Molecular Cell | 2010

Hydroxyurea-Stalled Replication Forks Become Progressively Inactivated and Require Two Different RAD51-Mediated Pathways for Restart and Repair

Eva Petermann; Manuel Luis Orta; Natalia Issaeva; Niklas Schultz; Thomas Helleday

Summary Faithful DNA replication is essential to all life. Hydroxyurea (HU) depletes the cells of dNTPs, which initially results in stalled replication forks that, after prolonged treatment, collapse into DSBs. Here, we report that stalled replication forks are efficiently restarted in a RAD51-dependent process that does not trigger homologous recombination (HR). The XRCC3 protein, which is required for RAD51 foci formation, is also required for replication restart of HU-stalled forks, suggesting that RAD51-mediated strand invasion supports fork restart. In contrast, replication forks collapsed by prolonged replication blocks do not restart, and global replication is rescued by new origin firing. We find that RAD51-dependent HR is triggered for repair of collapsed replication forks, without apparent restart. In conclusion, our data suggest that restart of stalled replication forks and HR repair of collapsed replication forks require two distinct RAD51-mediated pathways.


The EMBO Journal | 2009

PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination.

Helen E. Bryant; Eva Petermann; Niklas Schultz; Ann-Sofie Jemth; Olga Loseva; Natalia Issaeva; Fredrik Johansson; Serena Fernandez; Peter McGlynn; Thomas Helleday

If replication forks are perturbed, a multifaceted response including several DNA repair and cell cycle checkpoint pathways is activated to ensure faithful DNA replication. Here, we show that poly(ADP‐ribose) polymerase 1 (PARP1) binds to and is activated by stalled replication forks that contain small gaps. PARP1 collaborates with Mre11 to promote replication fork restart after release from replication blocks, most likely by recruiting Mre11 to the replication fork to promote resection of DNA. Both PARP1 and PARP2 are required for hydroxyurea‐induced homologous recombination to promote cell survival after replication blocks. Together, our data suggest that PARP1 and PARP2 detect disrupted replication forks and attract Mre11 for end processing that is required for subsequent recombination repair and restart of replication forks.


Molecular and Cellular Biology | 2005

Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks.

Nasrollah Saleh-Gohari; Helen E. Bryant; Niklas Schultz; Kayan M. Parker; Tobias N. Cassel; Thomas Helleday

ABSTRACT Homologous recombination is vital to repair fatal DNA damage during DNA replication. However, very little is known about the substrates or repair pathways for homologous recombination in mammalian cells. Here, we have compared the recombination products produced spontaneously with those produced following induction of DNA double-strand breaks (DSBs) with the I-SceI restriction endonuclease or after stalling or collapsing replication forks following treatment with thymidine or camptothecin, respectively. We show that each lesion produces different spectra of recombinants, suggesting differential use of homologous recombination pathways in repair of these lesions. The spontaneous spectrum most resembled the spectra produced at collapsed replication forks formed when a replication fork runs into camptothecin-stabilized DNA single-strand breaks (SSBs) within the topoisomerase I cleavage complex. We found that camptothecin-induced DSBs and the resulting recombination repair require replication, showing that a collapsed fork is the substrate for camptothecin-induced recombination. An SSB repair-defective cell line, EM9 with an XRCC1 mutation, has an increased number of spontaneous γH2Ax and RAD51 foci, suggesting that endogenous SSBs collapse replication forks, triggering recombination repair. Furthermore, we show that γH2Ax, DSBs, and RAD51 foci are synergistically induced in EM9 cells with camptothecin, suggesting that lack of SSB repair in EM9 causes more collapsed forks and more recombination repair. Furthermore, our results suggest that two-ended DSBs are rare substrates for spontaneous homologous recombination in a mammalian fibroblast cell line. Interestingly, all spectra showed evidence of multiple homologous recombination events in 8 to 16% of clones. However, there was no increase in homologous recombination genomewide in these clones nor were the events dependent on each other; rather, we suggest that a first homologous recombination event frequently triggers a second event at the same locus in mammalian cells.


Molecular and Cellular Biology | 2002

Different Roles for Nonhomologous End Joining and Homologous Recombination following Replication Arrest in Mammalian Cells

Cecilia Lundin; Klaus Erixon; Catherine Arnaudeau; Niklas Schultz; Dag Jenssen; Mark Meuth; Thomas Helleday

ABSTRACT Homologous recombination (HR) and nonhomologous end joining (NHEJ) play overlapping roles in repair of DNA double-strand breaks (DSBs) generated during the S phase of the cell cycle. Here, we characterized the involvement of HR and NHEJ in the rescue of DNA replication forks arrested or slowed by treatment of hamster cells with hydroxyurea or thymidine. We show that the arrest of replication with hydroxyurea generates DNA fragmentation as a consequence of the formation of DSBs at newly replicated DNA. Both HR and NHEJ protected cells from the lethal effects of hydroxyurea, and this agent also increased the frequency of recombination mediated by both homologous and nonhomologous exchanges. Thymidine induced a less stringent arrest of replication and did not generate detectable DSBs. HR alone rescued cells from the lethal effects of thymidine. Furthermore, thymidine increased the frequency of DNA exchange mediated solely by HR in the absence of detectable DSBs. Our data suggest that both NHEJ and HR are involved in repair of arrested replication forks that include a DSB, while HR alone is required for the repair of slowed replication forks in the absence of detectable DSBs.


Cancer Research | 2010

Poly(ADP-Ribose) Polymerase Is Hyperactivated in Homologous Recombination–Defective Cells

Ponnari Gottipati; Barbara Vischioni; Niklas Schultz; Joyce Solomons; Helen E. Bryant; Tatjana Djureinovic; Natalia Issaeva; Kate Sleeth; Ricky A. Sharma; Thomas Helleday

Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) is activated by DNA single-strand breaks (SSB) or at stalled replication forks to facilitate DNA repair. Inhibitors of PARP efficiently kill breast, ovarian, or prostate tumors in patients carrying hereditary mutations in the homologous recombination (HR) genes BRCA1 or BRCA2 through synthetic lethality. Here, we surprisingly show that PARP1 is hyperactivated in replicating BRCA2-defective cells. PARP1 hyperactivation is explained by the defect in HR as shRNA depletion of RAD54, RAD52, BLM, WRN, and XRCC3 proteins, which we here show are all essential for efficient HR and also caused PARP hyperactivation and correlated with an increased sensitivity to PARP inhibitors. BRCA2-defective cells were not found to have increased levels of SSBs, and PAR polymers formed in HR-defective cells do not colocalize to replication protein A or gammaH2AX, excluding the possibility that PARP hyperactivity is due to increased SSB repair or PARP induced at damaged replication forks. Resistance to PARP inhibitors can occur through genetic reversion in the BRCA2 gene. Here, we report that PARP inhibitor-resistant BRCA2-mutant cells revert back to normal levels of PARP activity. We speculate that the reason for the sensitivity of HR-defective cells to PARP inhibitors is related to the hyperactivated PARP1 in these cells. Furthermore, the presence of PAR polymers can be used to identify HR-defective cells that are sensitive to PARP inhibitors, which may be potential biomarkers.


Cell Cycle | 2005

Poly(ADP-ribose) Polymerase (PARP-1) in Homologous Recombination and as a Target for Cancer Therapy

Thomas Helleday; Helen E. Bryant; Niklas Schultz

Poly(ADP-ribose) polymerase (PARP-1) binds to DNA breaks to facilitate DNA repair. However, the role of PARP-1 in DNA repair appears to not be critical since PARP-1 knockout mice are viable, fertile and do not develop early onset tumours. Cells isolated from these mice show an increased level of homologous recombination. There is an intricate link between homologous recombination and PARP-1 and a possible role for PARP-1 in DNA double-strand break repair. Although PARP-1 appears not to be required for homologous recombination itself, it regulates the process through its involvement in the repair of DNA single-strand breaks (SSBs). SSBs persisting into the S phase of the cell cycle collapse replication forks, triggering homologous recombination for replication restart. We discuss the recent discoveries on the use of PARP-1 inhibitors as a targeted cancer therapy for recombination deficient cancers, such as BRCA2 tumours.


Journal of Molecular Biology | 2003

RAD51 is Involved in Repair of Damage Associated with DNA Replication in Mammalian Cells

Cecilia Lundin; Niklas Schultz; Catherine Arnaudeau; Atul Mohindra; Lasse Tengbjerg Hansen; Thomas Helleday

The RAD51 protein, a eukaryotic homologue of the Escherichia coli RecA protein, plays an important role in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) in mammalian cells. Recent findings suggest that HR may be important in repair following replication arrest in mammalian cells. Here, we have investigated the role of RAD51 in the repair of different types of damage induced during DNA replication with etoposide, hydroxyurea or thymidine. We show that etoposide induces DSBs at newly replicated DNA more frequently than gamma-rays, and that these DSBs are different from those induced by hydroxyurea. No DSB was found following treatment with thymidine. Although these compounds appear to induce different DNA lesions during DNA replication, we show that a cell line overexpressing RAD51 is resistant to all of them, indicating that RAD51 is involved in repair of a wide range of DNA lesions during DNA replication. We observe fewer etoposide-induced DSBs in RAD51-overexpressing cells and that HR repair of etoposide-induced DSBs is faster. Finally, we show that induced long-tract HR in the hprt gene is suppressed in RAD51-overexpressing cells, although global HR appears not to be suppressed. This suggests that overexpression of RAD51 prevents long-tract HR occurring during DNA replication. We discuss our results in light of recent models suggested for HR at stalled replication forks.


Nucleic Acids Research | 2009

The ERCC1/XPF endonuclease is required for completion of homologous recombination at DNA replication forks stalled by inter-strand cross-links

Ali Z. Al-Minawi; Yin-Fai Lee; Daniel Håkansson; Fredrik Johansson; Cecilia Lundin; Nasrollah Saleh-Gohari; Niklas Schultz; Dag Jenssen; Helen E. Bryant; Mark Meuth; John M. Hinz; Thomas Helleday

Both the ERCC1-XPF complex and the proteins involved in homoIogous recombination (HR) have critical roles in inter-strand cross-link (ICL) repair. Here, we report that mitomycin C-induced lesions inhibit replication fork elongation. Furthermore, mitomycin C-induced DNA double-strand breaks (DSBs) are the result of the collapse of ICL-stalled replication forks. These are not formed through replication run off, as we show that mitomycin C or cisplatin-induced DNA lesions are not incised by global genome nucleotide excision repair (GGR). We also suggest that ICL-lesion repair is initiated either by replication or transcription, as the GGR does not incise ICL-lesions. Furthermore, we report that RAD51 foci are induced by cisplatin or mitomycin C independently of ERCC1, but that mitomycin C-induced HR measured in a reporter construct is impaired in ERCC1-defective cells. These data suggest that ERCC1–XPF plays a role in completion of HR in ICL repair. We also find no additional sensitivity to cisplatin by siRNA co-depletion of XRCC3 and ERCC1, showing that the two proteins act on the same pathway to promote survival.


Mutation Research | 1996

The detection and evaluation of aneugenic chemicals.

James M. Parry; Elizabeth M. Parry; R Boumer; A Doherty; Sian Ellard; J O'Donovan; B. Hoebee; J.M. de Stoppelaar; Georges R. Mohn; Agneta Önfelt; A Renglin; Niklas Schultz; C Soderpalm-Bemdes; K.G Jensen; Micheline Kirsch-Volders; Azeddine Elhajouji; P. Van Hummelen; Francesca Degrassi; Antonio Antoccia; Daniela Cimini; M Izzo; Caterina Tanzarella; I.-D. Adler; U. Kliesch; G. Schriever-Schwemmer; P Gasser; Riccardo Crebelli; A. Carere; C Andreoli; R Benigni

Although aneuploidy makes a significant contribution to both somatic and inherited disease the mechanisms by which environmental chemicals may induce numerical chromosome aberrations are only poorly defined. The European Union Project was aimed to further our understanding of those chemical interactions with the components of the mitotic and meiotic cell division cycle which may lead to aneuploidy and to characterise the parameters such as cellular metabolism which may influence the activity of aneugenic chemicals. C-mitosis can be induced by the highly lipophilic polychlorinated biphenyl and the completion of mitosis and cleavage can be modified by agents which deplete cellular levels of reduced glutathione. Modifications of the fidelity of chromosome segregation were produced by inhibiting the functioning of topoisomerase II during chromatid separation. In contrast, the modification of centromere integrity resulted in chromosome breakage as opposed to disturbance of segregation. Modifiers of tubulin assembly and centriolar functioning in somatic cells such as acrylamide, vinblastine and diazepam reproduced their activity in rodent bone marrow and male germ cells. The analysis of chromosome malsegregation in Aspergillus nidulans by a structurally related series of halogenated hydrocarbons was used to develop a QSAR model which had high predictive value for the results of fungal tests for previously untested related chemicals. Metabolic studies of potential aneugens in genetically engineered human lymphoblastoid cells demonstrated the detoxification of the aneugenic activity of chloral hydrate and the activation of 2,3-dichlorobutane, 1,1,2-trichloroethane and trichloroethylene by Phase I biotransforming enzymes. Cell transformation studies in Syrian hamster dermal cultures using a panel of 22 reference and or potential aneugens indicated that 15 of the 22 produced positive results following single exposures. Five of the aneugens which were negative following single exposures produced positive results where cultures were continuously exposed for up to 6 weeks to low concentrations following a single non-transforming exposure to the mutagen dimethyl sulphate. The transformation studies indicate that a significant proportion of chemical aneugens are potential complete carcinogens and/or co-carcinogens. To optimise the enumeration of chromosomes following exposure to potential chemical aneugens whole chromosome paints and centromere specific probes suitable for use in fluorescence in situ hybridisation (FISH) were developed for the rat, mouse and Chinese hamster and selected human probes evaluated for their suitability for routine use. Molecular chromosome probes were used to develop protocols for enumerating chromosomes in metaphase cells and centromeres and micronuclei in interphase cells. The analysis of segregation of specific centromeres in binucleate cells following cytochalasin B treatment was shown to be a potentially valuable system for characterising non-disjunction following chemical exposure. Whole chromosome paints and centromere specific probes were used to demonstrate the presence of dose-response thresholds following treatment with a reference panel of spindle inhibiting chemicals. These data indicate that the FISH technology is suitable for evaluating the relative hazards of low-dose exposures to aneugenic chemicals.


Oncogene | 2004

p53 protects from replication-associated DNA double-strand breaks in mammalian cells.

Anuradha Kumari; Niklas Schultz; Thomas Helleday

Genetic instability caused by mutations in the p53 gene is generally thought to be due to a loss of the DNA damage response that controls checkpoint functions and apoptosis. Cells with mutant p53 exhibit high levels of homologous recombination (HR). This could be an indirect consequence of the loss of DNA damage response or p53 could have a direct role in HR. Here, we report that p53−/− mouse embryonic fibroblasts (MEFs) exhibit higher levels of the RAD51 protein and increased level of spontaneous RAD51 foci Agents that stall replication forks, for example, hydroxyurea (HU), potently induce HR repair and RAD51 foci. To test if the increase in RAD51 foci in p53−/− MEFs was due to an increased level of damage during replication, we measured the formation of DNA double-strand breaks (DSBs) in p53+/+ and p53−/− MEFs following treatments with HU. We found that HU induced DSBs only in p53−/− MEFs, indicating that p53 is involved in a pathway to protect stalled replication forks from being collapsed into a substrate for HR. Also, p53 is upregulated in response to agents that inhibit DNA replication, which supports our hypothesis. Finally, we observed that the DSBs produced in p53−/− MEFs did not result in a permanent arrest of replication and that they were repaired. Altogether, we suggest that the effect of p53 on HR and RAD51 levels and foci can be explained by the idea that p53 suppresses formation of recombinogenic lesions.

Collaboration


Dive into the Niklas Schultz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge