Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolai B. Ulyanov is active.

Publication


Featured researches published by Nikolai B. Ulyanov.


Molecular and Cellular Biology | 2007

A Triple Helix within a Pseudoknot Is a Conserved and Essential Element of Telomerase RNA

Kinneret Shefer; Yogev Brown; Valentin Gorkovoy; Tamar Nussbaum; Nikolai B. Ulyanov; Yehuda Tzfati

ABSTRACT Telomerase copies a short template within its integral telomerase RNA onto eukaryotic chromosome ends, compensating for incomplete replication and degradation. Telomerase action extends the proliferative potential of cells, and thus it is implicated in cancer and aging. Nontemplate regions of telomerase RNA are also crucial for telomerase function. However, they are highly divergent in sequence among species, and their roles are largely unclear. Using in silico three-dimensional modeling, constrained by mutational analysis, we propose a three-dimensional model for a pseudoknot in telomerase RNA of the budding yeast Kluyveromyces lactis. Interestingly, this structure includes a U-A·U major-groove triple helix. We confirmed the triple-helix formation in vitro using oligoribonucleotides and showed that it is essential for telomerase function in vivo. While triplex-disrupting mutations abolished telomerase function, triple compensatory mutations that formed pH-dependent G-C·C+ triples restored the pseudoknot structure in a pH-dependent manner and partly restored telomerase function in vivo. In addition, we identified a novel type of triple helix that is formed by G-C·U triples, which also partly restored the pseudoknot structure and function. We propose that this unusual structure, so far found only in telomerase RNA, provides an essential and conserved telomerase-specific function.


Methods in Enzymology | 1995

[4] Statistical analysis of DNA duplex structural features

Nikolai B. Ulyanov; Thomas L. James

Publisher Summary This chapter discusses the emerging picture of the DNA duplexes in solution as seen by the modern nuclear magnetic resonance (NMR) methods. Commonly available experimental NMR data alone are not sufficient to determine an accurate average structure of a DNA duplex in solution with high definition. A theoretical force field must be employed in the refinement process, together with experimental restraints, to produce solution structures in agreement with independent data. Importantly, the nature of a force field does not appear to be essential; using different empirical force fields but the same experimental restraints during the refinement has led to practically the same DNA conformations. The overall average conformation of DNA oligonucleotides in solution is B-form. At the same time, modern NMR methods are able to detect a strong sequence-dependent local heterogeneity of the solution DNA structure similar to the high-resolution X-ray methods for DNA in solid state.


Journal of Biomolecular NMR | 1995

Interproton distance bounds from 2D NOE intensities: Effect of experimental noise and peak integration errors

He Liu; H. Peter Spielmann; Nikolai B. Ulyanov; David E. Wemmer; Thomas L. James

SummaryThe effect of experimental and integration errors on the calculations in interproton distances from NOE intensities is examined. It is shown that NOE intensity errors can have a large impact on the distances determined. When multiple spin (‘spin diffusion’) effects are significant, the calculated distances are often underestimated, even when using a complete relaxation matrix analysis. In this case, the bias of distances to smaller values is due to the random errors in the NOE intensities. We show here that accurate upper and lower bounds of the distances can be obtained if the intensity errors are properly accounted for in the complete relaxation matrix calculations, specifically the MARDIGRAS algorithm. The basic MARDIGRAS algorithm has been previously described [Borgias, B.A. and James, T.L. (1990) J. Magn. Reson., 87, 475–487]. It has been shown to provide reasonably good interproton distance bounds, but experimental errors can compromise the quality of the resulting restraints, especially for weak cross peaks. In a new approach introduced here, termed RANDMARDI (random error MARDIGRAS), errors due to random noise and integration errors are mimicked by the addition of random numbers from within a specified range to each input intensity. Interproton distances are then calculated for the modified intensity set using MARDIGRAS. The distribution of distances that define the upper and lower distance bounds is obtained by using N randomly modified intensity sets. RANDMARDI has been used in the solution structure determination of the interstrand cross-link (XL) formed between 4′-hydroxymethyl-4,5′,8-trimethylpsoralen (HMT) and the DNA oligomer d(5′-GCGTACGC-3′)2 [Spielmann, H.P. et al. (1995) Biochemistry, 34, 12937–12953]. RANDMARDI generates accurate distance bounds from the experimental NOESY cross-peak intensities for the fixed (known) interproton distances in XL. This provides an independent internal check for the ability of RANDMARDI to accurately fit the experimental data. The XL structure determined using RANDMARDI-generated restrains is in good agreement with other biophysical data that indicate that there is no bend introduced into the DNA by the cross-link. In contrast, isolated spin-pair approximation calculations give distance restraints that, when applied in a restrained molecular dynamics protocol, produce a bent structure.


Biophysical Journal | 1995

Probability assessment of conformational ensembles: sugar repuckering in a DNA duplex in solution

Nikolai B. Ulyanov; Uli Schmitz; Anil Kumar; Thomas L. James

Conformational flexibility of molecules in solution implies that different conformers contribute to the NMR signal. This may lead to internal inconsistencies in the 2D NOE-derived interproton distance restraints and to conflict with scalar coupling-based torsion angle restraints. Such inconsistencies have been revealed and analyzed for the DNA octamer GTATAATG.CATATTAC, containing the Pribnow box consensus sequence. A number of subsets of distance restraints were constructed and used in the restrained Monte Carlo refinement of different double-helical conformers. The probabilities of conformers were then calculated by a quadratic programming algorithm, minimizing a relaxation rate-base residual index. The calculated distribution of conformers agrees with the experimental NOE data as an ensemble better than any single structure. A comparison with the results of this procedure, which we term PARSE (Probability Assessment via Relaxation rates of a Structural Ensemble), to an alternative method to generate solution ensembles showed, however, that the detailed multi-conformational description of solution DNA structure remains ambiguous at this stage. Nevertheless, some ensemble properties can be deduced with confidence, the most prominent being a distribution of sugar puckers with minor populations in the N-region and major populations in the S-region. Importantly, such a distribution is in accord with the analysis of independent experimental data--deoxyribose proton-proton scalar coupling constants.


Journal of Biomolecular Structure & Dynamics | 2010

Sequence-dependent Kink-and-Slide Deformations of Nucleosomal DNA Facilitated by Histone Arginines Bound in the Minor Groove

Difei Wang; Nikolai B. Ulyanov; Victor B. Zhurkin

Abstract In addition to bending and twisting deformabilities, the lateral displacements of the DNA axis (Kink-and-Slide) play an important role in DNA wrapping around the histone core (M. Y. Tolstorukov, A. V. Colasanti, D. M. McCandlish, W. K. Olson, V. B. Zhurkin, J. Mol. Biol. 371, 725-738 (2007)). Here, we show that these Kink-and-Slide deformations are likely to be stabilized by the arginine residues of histones interacting with the minor groove of DNA. The arginines are positioned asymmetrically in the minor groove, being closer to one strand. The asymmetric arginine-DNA interactions facilitate lateral displacement of base pairs across the DNA grooves, thus leading to a stepwise accumulation of the superhelical pitch of nucleosomal DNA. To understand the sequence dependence of such Kink-and-Slide deformations, we performed all-atom calculations of DNA hexamers with the YR and RY steps in the center. We found that when the unrestrained DNA deformations are allowed, the YR steps tend to bend into the major groove, and RY steps bend into the minor groove. However, when the nucleosomal Kink-and-Slide deformation is considered, the YR steps prove to be more favorable for bending into the minor groove. Overall, the Kink-and-Slide deformation energy of DNA increases in the order TA < CA < CG < GC < AC < AT. We propose a simple stereochemical model accounting for this sequence dependence. Our results agree with experimental data indicating that the TA step most frequently occurs in the minor-groove kink positions in the most stable nucleosomes. Our computations demonstrate that the Kink-and-Slide distortion is accompanied by the BI to BII transition. This fact, together with irregularities in the two-dimensional (Roll, Slide) energy contour maps, suggest that the Kink-and-Slide deformations represent a nonharmonic behavior of the duplex. This explains the difference between the two estimates of the DNA deformation energy in nucleosome - the earlier one made using knowledge-based elastic energy functions, and the current one based on all-atom calculations. Our findings are useful for refining the score functions for the prediction of nucleosome positioning. In addition, the reverse bending behavior of the YR and RY steps revealed under the Kink-and-Slide constraint is important for understanding the molecular mechanisms of binding transcription factors (such as p53) to DNA exposed on the surface of nucleosome.


Journal of Biological Chemistry | 2006

NMR Structure of the Full-length Linear Dimer of Stem-Loop-1 RNA in the HIV-1 Dimer Initiation Site

Nikolai B. Ulyanov; Anwer Mujeeb; Zhihua Du; Marco Tonelli; Tristram G. Parslow; Thomas L. James

The packaging signal of HIV-1 RNA contains a stem-loop structure, SL1, which serves as the dimerization initiation site for two identical copies of the genome and is important for packaging of the RNA genome into the budding virion and for overall infectivity. SL1 spontaneously dimerizes via a palindromic hexanucleotide sequence in its apical loop, forming a metastable kissing dimer form. Incubation with nucleocapsid protein causes this form to refold to a thermodynamically stable mature linear dimer. Here, we present an NMR structure of the latter form of the full-length SL1 sequence of the Lai HIV-1 isolate. The structure was refined using nuclear Overhauser effect and residual dipolar coupling data. The structure presents a symmetric homodimer of two RNA strands of 35 nucleotides each; it includes five stems separated by four internal loops. The central palindromic stem is surrounded by two symmetric adenine-rich 1–2 internal loops, A-bulges. All three adenines in each A-bulge are stacked inside the helix, consistent with the solution structures of shorter SL1 constructs determined previously. The outer 4-base pair stems and, proximal to them, purine-rich 1–3 internal loops, or G-bulges, are the least stable parts of the molecule. The G-bulges display high conformational variability in the refined ensemble of structures, despite the availability of many structural restraints for this region. Nevertheless, most conformations share a similar structural motif: a guanine and an adenine from opposite strands form a GA mismatch stacked on the top of the neighboring stem. The two remaining guanines are exposed, one in the minor groove and another in the major groove side of the helix, consistent with secondary structure probing data for SL1. These guanines may be recognized by the nucleocapsid protein, which binds tightly to the G-bulge in vitro.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Pyrimidine motif triple helix in the Kluyveromyces lactis telomerase RNA pseudoknot is essential for function in vivo

Darian D. Cash; Osnat Cohen-Zontag; Nak-Kyoon Kim; Kinneret Shefer; Yogev Brown; Nikolai B. Ulyanov; Yehuda Tzfati; Juli Feigon

Telomerase is a ribonucleoprotein complex that extends the 3′ ends of linear chromosomes. The specialized telomerase reverse transcriptase requires a multidomain RNA (telomerase RNA, TER), which includes an integral RNA template and functionally important template-adjacent pseudoknot. The structure of the human TER pseudoknot revealed that the loops interact with the stems to form a triple helix shown to be important for activity in vitro. A similar triple helix has been predicted to form in diverse fungi TER pseudoknots. The solution NMR structure of the Kluyveromyces lactis pseudoknot, presented here, reveals that it contains a long pyrimidine motif triple helix with unexpected features that include three individual bulge nucleotides and a C+•G-C triple adjacent to a stem 2–loop 2 junction. Despite significant differences in sequence and base triples, the 3D shape of the human and K. lactis TER pseudoknots are remarkably similar. Analysis of the effects of nucleotide substitutions on cell growth and telomere lengths provides evidence that this conserved structure forms in endogenously assembled telomerase and is essential for telomerase function in vivo.


Nucleic Acids Research | 2007

Pseudoknot structures with conserved base triples in telomerase RNAs of ciliates

Nikolai B. Ulyanov; Kinneret Shefer; Thomas L. James; Yehuda Tzfati

Telomerase maintains the integrity of telomeres, the ends of linear chromosomes, by adding G-rich repeats to their 3′-ends. Telomerase RNA is an integral component of telomerase. It contains a template for the synthesis of the telomeric repeats by the telomerase reverse transcriptase. Although telomerase RNAs of different organisms are very diverse in their sequences, a functional non-template element, a pseudoknot, was predicted in all of them. Pseudoknot elements in human and the budding yeast Kluyveromyces lactis telomerase RNAs contain unusual triple-helical segments with AUU base triples, which are critical for telomerase function. Such base triples in ciliates have not been previously reported. We analyzed the pseudoknot sequences in 28 ciliate species and classified them in six different groups based on the lengths of the stems and loops composing the pseudoknot. Using miniCarlo, a helical parameter-based modeling program, we calculated 3D models for a representative of each morphological group. In all cases, the predicted structure contains at least one AUU base triple in stem 2, except for that of Colpidium colpoda, which contains unconventional GCG and AUA triples. These results suggest that base triples in a pseudoknot element are a conserved feature of all telomerases.


Journal of Biomolecular NMR | 1993

Metropolis Monte Carlo calculations of DNA structure using internal coordinates and NMR distance restraints: An alternative method for generating a high-resolution solution structure

Nikolai B. Ulyanov; Uli Schmitz; Thomas L. James

SummaryA new method, a restrained Monte Carlo (rMC) calculation, is demonstrated for generating high-resolution structures of DNA oligonucleotides in solution from interproton distance restraints and bounds derived from complete relaxation matrix analysis of two-dimensional nuclear Overhauser effect (NOE) spectral peak intensities. As in the case of restrained molecular dynamics (rMD) refinement of structures, the experimental distance restraints and bounds are incorporated as a pseudo-energy term (or penalty function) into the mathematical expression for the molecular energy. However, the use of generalized helical parameters, rather than Cartesian coordinates, to define DNA conformation increases efficiency by decreasing by an order of magnitude the number of parameters needed to describe a conformation and by simplifying the potential energy profile. The Metropolis Monte Carlo method is employed to simulate an annealing process. The rMC method was applied to experimental 2D NOE data from the octamer duplex d(GTA-TAATG)·d(CATTATAC). Using starting structures from different locations in conformational space (e.g. A-DNA and B-DNA), the rMC calculations readily converged, with a root-mean-square deviation (RMSD) of <0.3 Å between structures generated using different protocols and starting structures. Theoretical 2D NOE peak intensities were calculated for the rMC-generated structures using the complete relaxation matrix program CORMA, enabling a comparison with experimental intensities via residual indices. Simulation of the vicinal proton coupling constants was carried out for the structures generated, enabling a comparison with the experimental deoxyribose ring coupling constants, which were not utilized in the structure determination in the case of the rMC simulations. Agreement with experimental 2D NOE and scalar coupling data was good in all cases. The rMC structures are quite similar to that refined by a traditional restrained MD approach (RMSD<0.5 Å) despite the different force fields used and despite the fact that MD refinement was conducted with additional restraints imposed on the endocyclic torsion angles of deoxyriboses. The computational time required for the rMC and rMD calculations is about the same. A comparison of structural parameters is made and some limitations of both methods are discussed with regard to the average nature of the experimental restraints used in the refinement.


Journal of Medicinal Chemistry | 2008

Discovery of ligands for a novel target, the human telomerase RNA, based on flexible-target virtual screening and NMR.

Irene Gómez Pinto; Christophe Guilbert; Nikolai B. Ulyanov; Jay Stearns; Thomas L. James

The human ribonucleoprotein telomerase is a validated anticancer drug target, and hTR-P2b is a part of the human telomerase RNA (hTR) essential for its activity. Interesting ligands that bind hTR-P2b were identified by iteratively using a tandem structure-based approach: docking of potential ligands from small databases to hTR-P2b via the program MORDOR, which permits flexibility in both ligand and target, with subsequent NMR screening of high-ranking compounds. A high percentage of the compounds tested experimentally were found via NMR to bind to the U-rich region of hTR-P2b; most have MW < 500 Da and are from different compound classes, and several possess a charge of 0 or +1. Of the 48 ligands identified, 24 exhibit a decided preference to bind hTR-P2b RNA rather than A-site rRNA and 10 do not bind A-site rRNA at all. Binding affinity was measured by monitoring RNA imino proton resonances for some of the compounds that showed hTR binding preference.

Collaboration


Dive into the Nikolai B. Ulyanov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anwer Mujeeb

University of California

View shared research outputs
Top Co-Authors

Avatar

He Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Uli Schmitz

University of California

View shared research outputs
Top Co-Authors

Avatar

Zhihua Du

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred E. Cohen

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge