Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolai Fedorov is active.

Publication


Featured researches published by Nikolai Fedorov.


Neuron | 2002

Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning.

Ype Elgersma; Nikolai Fedorov; Sami Ikonen; Esther S. Choi; Minetta Elgersma; Ofelia M. Carvalho; Karl Peter Giese; Alcino J. Silva

To investigate the function of the alpha calcium-calmodulin-dependent kinase II (alphaCaMKII) inhibitory autophosphorylation at threonines 305 and/or 306, we generated knockin mice that express alphaCaMKII that cannot undergo inhibitory phosphorylation. In addition, we generated mice that express the inhibited form of alphaCaMKII, which resembles the persistently phosphorylated kinase at these sites. Our data demonstrate that blocking inhibitory phosphorylation increases CaMKII in the postsynaptic density (PSD), lowers the threshold for hippocampal long-term potentiation (LTP), and results in hippocampal-dependent learning that seems more rigid and less fine-tuned. Mimicking inhibitory phosphorylation dramatically decreased the association of CaMKII with the PSD and blocked both LTP and learning. These data demonstrate that inhibitory phosphorylation has a critical role in plasticity and learning.


Neuropharmacology | 2001

Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine-nucleotide releasing factor 1 (Ras-GRF1)

Karl Peter Giese; Eugenia Friedman; Jean-Baptiste Telliez; Nikolai Fedorov; Mary Wines; Larry A. Feig; Alcino J. Silva

Previous results have suggested that the Ras signaling pathway is involved in learning and memory. Ras is activated by nucleotide exchange factors, such as the calmodulin-activated guanine-nucleotide releasing factor 1 (Ras-GRF1). To test whether Ras-GRF1 is required for learning and memory, we inactivated the Ras-GRF1 gene in mice. These mutants performed normally in a rota-rod motor coordination task, and in two amygdala-dependent tasks (inhibitory avoidance and contextual conditioning). In contrast the mutants were impaired in three hippocampus-dependent learning tasks: contextual discrimination, the social transmission of food preferences, and the hidden-platform version of the Morris water maze. These studies indicate that Ras-GRF1 plays a role in hippocampal-dependent learning and memory.


Neuropharmacology | 2010

Structural differences determine the relative selectivity of nicotinic compounds for native α4β2^*-, α6β2^*-, α3β4^*- and α7-nicotine acetylcholine receptors

Sharon R. Grady; Ryan M. Drenan; Scott R. Breining; Daniel Yohannes; Charles R. Wageman; Nikolai Fedorov; Sheri McKinney; Paul Whiteaker; Merouane Bencherif; Henry A. Lester; Michael J. Marks

Mammalian brain expresses multiple nicotinic acetylcholine receptor (nAChR) subtypes that differ in subunit composition, sites of expression and pharmacological and functional properties. Among known subtypes of receptors, alpha 4 beta 2* and alpha 6 beta 2*-nAChR have the highest affinity for nicotine (where * indicates possibility of other subunits). The alpha 4 beta 2*-nAChRs are widely distributed, while alpha 6 beta 2*-nAChR are restricted to a few regions. Both subtypes modulate release of dopamine from the dopaminergic neurons of the mesoaccumbens pathway thought to be essential for reward and addiction. alpha 4 beta 2*-nAChR also modulate GABA release in these areas. Identification of selective compounds would facilitate study of nAChR subtypes. An improved understanding of the role of nAChR subtypes may help in developing more effective smoking cessation aids with fewer side effects than current therapeutics. We have screened a series of nicotinic compounds that vary in the distance between the pyridine and the cationic center, in steric bulk, and in flexibility of the molecule. These compounds were screened using membrane binding and synaptosomal function assays, or recordings from GH4C1 cells expressing h alpha 7, to determine affinity, potency and efficacy at four subtypes of nAChRs found in brain, alpha 4 beta 2*, alpha 6 beta 2*, alpha 7 and alpha 3 beta 4*. In addition, physiological assays in gain-of-function mutant mice were used to assess in vivo activity at alpha 4 beta 2* and alpha 6 beta 2*-nAChRs. This approach has identified several compounds with agonist or partial agonist activity that display improved selectivity for alpha 6 beta 2*-nAChR.


Journal of Medicinal Chemistry | 2012

Discovery of (2S,3R)-N-[2-(pyridin-3-ylmethyl)-1-azabicyclo[2.2.2]oct-3-yl]benzo[b]furan-2-carboxamide (TC-5619), a selective α7 nicotinic acetylcholine receptor agonist, for the treatment of cognitive disorders.

Anatoly Mazurov; David C. Kombo; Terry A. Hauser; Lan Miao; Gary Maurice Dull; John Genus; Nikolai Fedorov; Lisa Benson; Serguei S. Sidach; Yun-De Xiao; Philip S. Hammond; John W. James; Craig Harrison Miller; Daniel Yohannes

(2S,3R)-N-[2-(Pyridin-3-ylmethyl)-1-azabicyclo[2.2.2]oct-3-yl]benzo[b]furan-2-carboxamide (7a, TC-5619), a novel selective agonist of the α7 neuronal nicotinic acetylcholine receptor, has been identified as a promising drug candidate for the treatment of cognitive impairment associated with neurological disorders. 7a demonstrated more than a thousand-fold separation between the affinities for the α7 and α4β2 receptor subtypes and had no detectable effects on muscle or ganglionic nicotinic receptor subtypes, indicating a marked selectivity for the central nervous system over the peripheral nervous system. Results obtained from homology modeling and docking explain the observed selectivity. 7a had positive effects across cognitive, positive, and negative symptoms of schizophrenia in animal models and was additive or synergistic with the antipsychotic clozapine. Compound 7a, as an augmentation therapy to the standard treatment with antipsychotics, demonstrated encouraging results on measures of negative symptoms and cognitive dysfunction in schizophrenia and was well tolerated in a phase II clinical proof of concept trial in patients with schizophrenia.


Journal of Pharmacology and Experimental Therapeutics | 2009

Differential Pharmacologies of Mecamylamine Enantiomers: Positive Allosteric Modulation and Noncompetitive Inhibition

Nikolai Fedorov; Lisa Benson; John D. Graef; Patrick M. Lippiello; Merouane Bencherif

(±)-Mecamylamine is a racemic mixture of a widely used brain-permeant noncompetitive inhibitor of muscle-type and neuronal nicotinic receptors (NNRs). The present studies evaluated whether the stereoisomers of this drug show different profiles for inhibition of the high-sensitivity (HS) and low-sensitivity (LS) isoforms of the human α4β2 NNR subtype expressed in subclonal human epithelial 1 cells. We found that at low concentrations (micromolar range), TC-5214 [S-(+)-mecamylamine] was more effective than TC-5213 [R-(-)-mecamylamine] in inhibiting the LS α4β2 NNRs. In addition, we demonstrated that TC-5214 potentiated and TC-5213 inhibited agonist-induced activation of HS α4β2 NNRs. The stereoselectivity of mecamylamine enantiomers at HS and LS α4β2 receptors demonstrates that TC-5214 is the preferred stereoisomer for selective activation of HS, whereas it is more effective in suppressing LS receptor function. This feature could be relevant to therapeutic applications where such a selective mechanism of action is required.


Journal of Biomolecular Screening | 2013

Validation of a High-Throughput, Automated Electrophysiology Platform for the Screening of Nicotinic Agonists and Antagonists

John D. Graef; Lisa Benson; Serguei S. Sidach; Haiyang Wei; Patrick M. Lippiello; Merouane Bencherif; Nikolai Fedorov

High-throughput compound screening using electrophysiology-based assays represents an important tool for biomedical research and drug discovery programs. The recent development and availability of devices capable of performing high-throughput electrophysiology-based screening have brought the need to validate these tools by producing data that are consistent with results obtained with conventional electrophysiological methods. In this study, we compared the response properties of hα3β4 and hα4β2 nicotinic receptors to their endogenous ligand acetylcholine (ACh) using three separate electrophysiology platforms: Dynaflow (low-throughput, manual system), PatchXpress 7000A (medium-throughput automated platform), and IonWorks Barracuda (high-throughput automated platform). We found that despite the differences in methodological approaches between these technologies, the EC50 values from the ACh dose-response curves were consistent between all three platforms. In addition, we have validated the IonWorks Barracuda for both competitive and uncompetitive inhibition assays by using the competitive nicotinic antagonist dihydro-beta-erythroidin (DHβE) and uncompetitive nicotinic antagonist mecamylamine. Furthermore, we have demonstrated the utility of a custom-written algorithm for generating dose-response curves from multiple extrapolated current metrics that allows for discriminating between competitive and uncompetitive inhibition while maintaining high-throughput capacity. This study provides validation of the consistency of results using low-, medium-, and high-throughput electrophysiology platforms and supports their use for screening nicotinic compounds.


Journal of Pharmacology and Experimental Therapeutics | 2013

Functional and Structural Interaction of (-)-Reboxetine with the Human α4β2 Nicotinic Acetylcholine Receptor

Hugo R. Arias; Nikolai Fedorov; Lisa Benson; Patrick M. Lippiello; Greg J. Gatto; Dominik Feuerbach; Marcelo O. Ortells

The interaction of the selective norepinephrine reuptake inhibitor (−)-reboxetine with the human α4β2 nicotinic acetylcholine receptor (nAChR) in different conformational states was studied by several functional and structural approaches. Patch-clamp and Ca2+-influx results indicate that (−)-reboxetine does not activate hα4β2 nAChRs via interaction with the orthosteric sites, but inhibits agonist-induced hα4β2 activation by a noncompetitive mechanism. Consistently, the results from the electrophysiology-based functional approach suggest that (−)-reboxetine may act via open channel block; therefore, it is capable of producing a use-dependent type of inhibition of the hα4β2 nAChR function. We tested whether (−)-reboxetine binds to the luminal [3H]imipramine site. The results indicate that, although (−)-reboxetine binds with low affinity to this site, it discriminates between the resting and desensitized hα4β2 nAChR ion channels. Patch-clamp results also indicate that (−)-reboxetine progressively inhibits the hα4β2 nAChR with two-fold higher potency at the end of one-second application of agonist, compared with the peak current. The molecular docking studies show that (−)-reboxetine blocks the ion channel at the level of the imipramine locus, between M2 rings 6′ and 14′. In addition, we found a (−)-reboxetine conformer that docks in the helix bundle of the α4 subunit, near the middle region. According to molecular dynamics simulations, (−)-reboxetine binding is stable for both sites, albeit less stable than imipramine. The interaction of these drugs with the helix bundle might alter allostericaly the functionality of the channel. In conclusion, the clinical action of (−)-reboxetine may be produced (at least partially) by its inhibitory action on hα4β2 nAChRs.


Journal of Medicinal Chemistry | 2012

Structure-activity studies of 7-heteroaryl-3-azabicyclo[3.3.1]non-6-enes: a novel class of highly potent nicotinic receptor ligands.

Scott R. Breining; Matt S. Melvin; Balwinder Singh Bhatti; Gary D. Byrd; Melanie N. Kiser; Christopher D. Hepler; Dawn N. Hooker; Jenny Z. Zhang; Leslie A. Reynolds; Lisa R. Benson; Nikolai Fedorov; Serguei S. Sidach; J. Pike Mitchener; Linda Lucero; Ronald J. Lukas; Paul Whiteaker; Daniel Yohannes

The potential for nicotinic ligands with affinity for the α4β2 or α7 subtypes to treat such diverse diseases as nicotine addiction, neuropathic pain, and neurodegenerative and cognitive disorders has been exhibited clinically for several compounds while preclinical activity in relevant in vivo models has been demonstrated for many more. For several therapeutic programs, we sought nicotinic ligands with various combinations of affinity and function across both subtypes, with an emphasis on dual α4β2-α7 ligands, to explore the possibility of synergistic effects. We report here the structure-activity relationships (SAR) for a novel series of 7-heteroaryl-3-azabicyclo[3.3.1]non-6-enes and characterize many of the analogues for activity at multiple nicotinic subtypes.


Bioorganic & Medicinal Chemistry Letters | 2013

Pharmacological properties and predicted binding mode of arylmethylene quinuclidine-like derivatives at the α3β4 nicotinic acetylcholine receptor (nAChR).

David C. Kombo; Terry A. Hauser; Vladimir P. Grinevich; Matthew S. Melvin; Jon-Paul Strachan; Serguei S. Sidach; Joseph Chewning; Nikolai Fedorov; Kartik Tallapragada; Scott R. Breining; Craig Harrison Miller

We have carried out a pharmacological evaluation of arylmethylene quinuclidine derivatives interactions with human α3β4 nAChRs subtype, using cell-based receptor binding, calcium-influx, electrophysiological patch-clamp assays and molecular modeling techniques. We have found that the compounds bind competitively to the α3β4 receptor with micromolar affinities and some of the compounds behave as non-competitive antagonists (compounds 1, 2 and 3), displaying submicromolar IC(50) values. These evidences suggest a mixed mode of action for these compounds, having interactions at the orthosteric site and more pronounced interactions at an allosteric site to block agonist effects. One of the compounds, 1-benzyl-3-(diphenylmethylene)-1-azoniabicyclo[2.2.2]octane chloride (compound 3), exhibited poorly reversible use-dependent block of α3β4 channels. We also found that removal of a phenyl group from compound 1 confers a partial agonism to the derived analog (compound 6). Introducing a hydrogen-bond acceptor into the 3-benzylidene quinuclidine derivative (compound 7) increases agonism potency at the α3β4 receptor subtype. Docking into the orthosteric binding site of a α3β4 protein structure derived by comparative modeling accurately predicted the experimentally-observed trend in binding affinity. Results supported the notion that binding requires a hydrogen bond formation between the ligand basic nitrogen and the backbone carbonyl oxygen atom of the conserved Trp-149.


Journal of Neuroscience Methods | 2013

Slice XVIvo™: a novel electrophysiology system with the capability for 16 independent brain slice recordings.

John D. Graef; Haiyang Wei; Patrick M. Lippiello; Merouane Bencherif; Nikolai Fedorov

Here we validate the design and use of a novel, customized electrophysiology system (Slice XVIvo™) that is capable of recording from 16 independent brain slices. The system consists of 16 independent recording chambers in which individual electrodes can be manually manipulated and fixed in order to stimulate and record extracellular responses from 16 brain slices simultaneously. Responses from each brain slice are elicited with individual stimulus isolator units and recorded through separate channels, thus allowing for independent control and analysis of the evoked extracellular activity from each slice. The system was designed to fit on a standard anti-vibration table, thus the Slice XVIvo™ system occupies considerably less space than other currently available multi-slice recording systems. We have demonstrated the utility of the system to obtain stable, extracellular responses from the CA1 region of the hippocampus, as well as induce long-term potentiation. Additionally, we show the utility of the Slice XVIvo™ system to significantly improved throughput for testing compounds in an oxygen and glucose deprivation assay. Overall, we have designed, created and validated a considerably cost- and space-efficient electrophysiology system that greatly improves throughput while minimizing the number of animals used in experiments.

Collaboration


Dive into the Nikolai Fedorov's collaboration.

Top Co-Authors

Avatar

Merouane Bencherif

Barrow Neurological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anatoly Mazurov

National Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick M. Lippiello

R. J. Reynolds Tobacco Company

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge