Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolai Kashaev is active.

Publication


Featured researches published by Nikolai Kashaev.


Journal of Strain Analysis for Engineering Design | 2016

Effect of elasto-plastic material behaviour on determination of residual stress profiles using the hole drilling method

Sergey Chupakhin; Nikolai Kashaev; Norbert Huber

The hole drilling method is a well-known technique for the determination of non-uniform residual stress profiles by measuring relaxation distortions caused by the presence of the hole. The integral method, an inverse calculation technique on which the hole drilling method is based, assumes linear elastic material behaviour and is therefore limited to the measurement of residual stresses below 60% of the yield strength. The aim of this study is to investigate the effects of elastic–plastic material behaviour on the determined non-uniform residual stress profile when the residual stresses exceed the given 60% limit. To this end, compressive residual stress profiles, as they are typically induced by laser shock peening, are investigated using finite element simulations followed by an analysis with the integral method. The obtained results from the analysis are compared to the applied residual stress profiles. An evaluation of the deviation between these two profiles provides detailed insight into the expected error as a function of hole drilling depth and the ratio of residual stress magnitude to yield strength. As an additional benefit of the presented approach, it also provides an indication of the range of depth at which the non-uniform residual stress profile should be corrected to reduce measurement error.


Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2016

Process Optimization of Dual-Laser Beam Welding of Advanced Al-Li Alloys Through Hot Cracking Susceptibility Modeling

Yingtao Tian; J.D. Robson; Stefan Riekehr; Nikolai Kashaev; Li Wang; Tristan Lowe; Alexandra Karanika

Abstract Laser welding of advanced Al-Li alloys has been developed to meet the increasing demand for light-weight and high-strength aerospace structures. However, welding of high-strength Al-Li alloys can be problematic due to the tendency for hot cracking. Finding suitable welding parameters and filler material for this combination currently requires extensive and costly trial and error experimentation. The present work describes a novel coupled model to predict hot crack susceptibility (HCS) in Al-Li welds. Such a model can be used to shortcut the weld development process. The coupled model combines finite element process simulation with a two-level HCS model. The finite element process model predicts thermal field data for the subsequent HCS hot cracking prediction. The model can be used to predict the influences of filler wire composition and welding parameters on HCS. The modeling results have been validated by comparing predictions with results from fully instrumented laser welds performed under a range of process parameters and analyzed using high-resolution X-ray tomography to identify weld defects. It is shown that the model is capable of accurately predicting the thermal field around the weld and the trend of HCS as a function of process parameters.


Journal of Strain Analysis for Engineering Design | 2017

Artificial neural network for correction of effects of plasticity in equibiaxial residual stress profiles measured by hole drilling

Sergey Chupakhin; Nikolai Kashaev; Benjamin Klusemann; Norbert Huber

The hole drilling method is a widely known technique for the determination of non-uniform residual stresses in metallic structures by measuring strain relaxations at the material surface caused through the stress redistribution during drilling of the hole. The integral method is a popular procedure for solving the inverse problem of determining the residual stresses from the measured surface strain. It assumes that the residual stress can be approximated by step-wise constant values, and the material behaves elastically so that the superposition principle can be applied. Required calibration data are obtained from finite element simulations, assuming linear elastic material behavior. That limits the method to the measurement of residual stresses well below the yield strength. There is a lack of research regarding effects caused by residual stresses approaching the yield strength and high through-thickness stress gradients as well as the correction of the resulting errors. However, such high residual stresses are often introduced in various materials by processes such as laser shock peening, for example, to obtain life extension of safety relevant components. The aim of this work is to investigate the limitations of the hole drilling method related to the effects of plasticity and to develop an applicable and efficient method for stress correction, capable of covering a wide range of stress levels. For this reason, an axisymmetric model was used for simulating the hole drilling process in ABAQUS involving plasticity. Afterward, the integral method was applied to the relaxation strain data for determining the equibiaxial stress field. An artificial neural network has been used for solving the inverse problem of stress profile correction. Finally, AA2024-T3 specimens were laser peened and the measured stress fields were corrected by means of the trained network. To quantify the stress overestimation in the hole drilling measurement, an error evaluation has been conducted.


Materials Science Forum | 2013

Crashworthiness of Magnesium Sheet Structures

Dirk Steglich; Jan Bohlen; Xiao Wei Tian; Stefan Riekehr; Nikolai Kashaev; Swantje Bargmann; Dietmar Letzig; Karl Ulrich Kainer; Norbert Huber

A hollow rectangular profile, as an example of a typical structural component made of magnesium alloy sheets has been built, tested and evaluated in order to assess its behaviour during axial crushing. The profiles were joined from plane sheets of AZ31 and ZE10, respectively, by laser beam welding and were then tested in compression. Numerical simulations have been conducted to understand the complex interplay between hardening characteristics of the materials under investigation, profile cross-section variation and energy absorption. The results from the compression testing of the profiles show that the welds are not the source of damage initiation and failure. The performance of the magnesium profiles in terms of dissipated specific energy is confirmed for small and intermediate displacements to be comparable to that of aluminium profiles. For large displacements, however, the shear-type failure mode of magnesium causes a sharp drop of the crushing force and thus limits the energy absorption. These findings demonstrate the requirement for an alloy and wrought magnesium process development specifically for crash applications which aims at progressive hardening along with high ductility for improving the bending and shear behaviour.


Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2016

Laser Weldability of High-Strength Al-Zn Alloys and Its Improvement by the Use of an Appropriate Filler Material

Josephin Enz; Stefan Riekehr; Volker Ventzke; Norbert Huber; Nikolai Kashaev

Heat-treatable Al-Zn alloys are promising candidates for use as structural lightweight materials in automotive and aircraft applications. This is mainly due to their high strength-to-density ratio in comparison to conventionally employed Al alloys. Laser beam welding is an efficient method for producing joints with high weld quality and has been established in the industry for many years. However, it is well known that aluminum alloys with a high Zn content or, more precisely, with a high (Zn + Mg + Cu) content are difficult to fusion weld due to the formation of porosity and hot cracks. The present study concerns the laser weldability of these hard-to-weld Al-Zn alloys. In order to improve weldability, it was first necessary to understand the reasons for weldability problems and to identify crucial influencing factors. Based on this knowledge, it was finally possible to develop an appropriate approach. For this purpose, vanadium was selected as additional filler material. Vanadium exhibits favorable thermophysical properties and, thereby, can improve the weldability of Al-Zn alloys. The effectiveness of the approach was verified by its application to several Al-Zn alloys with differing amounts of (Zn + Mg + Cu).


Materials Science Forum | 2015

Laser Weldability of Different Al-Zn Alloys and its Improvement

Josephin Enz; Stefan Riekehr; Volker Ventzke; Nikolai Kashaev

Weld defects - such as porosity and hot cracking - occur especially during the laser beam welding of high-alloyed Al-Zn alloys. This significantly limits the application range of these promising high-strength alloys. In the present study the laser weldability of different Al-Zn alloys was investigated regarding the used welding parameters and the chemical composition of the alloys. In addition, the novel approach of the Helmholtz-Zentrum Geesthacht for overcoming the weldability problems was applied to the different Al-Zn alloys in order to assess its capability. It was shown that the laser weldability of Al-Zn alloys deteriorates with an increasing amount of Zn, Mg and Cu. The variation of laser beam welding parameters did not lead to any improvement of weldability. Only the use of the new approach resulted in promising welding results even for the high-alloyed Al-Zn alloys.


International Journal of Structural Integrity | 2015

Fracture mechanical behaviour of laser beam-welded AA2198 butt joints and integral structures

Nikolai Kashaev; Stefan Riekehr; Kay Erdmann; Alexandre Amorim Carvalho; Maxim Nurgaliev; Nikolaos D. Alexopoulos; Alexandra Karanika

Purpose – Composite materials and metallic structures already compete for the next generation of single-aisle aircraft. Despite the good mechanical properties of composite materials metallic structures offer challenging properties and high cost effectiveness via the automation in manufacturing, especially when metallic structures will be welded. In this domain, metallic aircraft structures will require weight savings of approximately 20 per cent to increase the efficiency and reduce the CO2 emission by the same amount. Laser beam welding of high-strength Al-Li alloy AA2198 represents a promising method of providing a breakthrough response to the challenges of lightweight design in aircraft applications. The key factor for the application of laser-welded AA2198 structures is the availability of reliable data for the assessment of their damage tolerance behaviour. The paper aims to discuss these issues. Design/methodology/approach – In the presented research, the mechanical properties concerning the quasi-static tensile and fracture toughness (R-curve) of laser beam-welded AA2198 butt joints are investigated. In the next step, a systematic analysis to clarify the deformation and fracture behaviour of the laser beam-welded AA2198 four-stringer panels is conducted. Findings – AA2198 offers better resistance against fracture than the well-known AA2024 alloy. It is possible to weld AA2198 with good results, and the welds also exhibit a higher fracture resistance than AA2024 base material (BM). Welded AA2198 four-stringer panels exhibit a residual strength behaviour superior to that of the flat BM panel. Originality/value – The present study is undertaken on the third-generation airframe-quality Al-Li alloy AA2198 with the main emphasis to investigate the mechanical fracture behaviour of AA2198 BMs, laser beam-welded joints and laser beam-welded integral structures. Studies investigating the damage tolerance of welded integral structures of Al-Li alloys are scarce.


Advanced Materials Research | 2014

Fatigue and Fatigue Crack Propagation of Laser Beam-Welded AA2198 Joints and Integral Structures

Nikolai Kashaev; Sergey Chupakhin; Josephin Enz; Volker Ventzke; Anne Groth; Manfred Horstmann; Stefan Riekehr

To meet the future demands of the aerospace industry with respect to safety, productivity, weight, and cost, new materials and joining concepts have being developed. Recent developments in the metallurgical field now make it possible to use laser-weldable Al-alloys of the 2xxx series such as AA2198 with a high structural efficiency index due to their high strength and low density. AA2198 holds the promise of providing a breakthrough response to the challenges of lightweight design in aircraft applications. Laser beam welding as an efficient joining technology for fuselage structures is already established in the aircraft industry for lower fuselage panels because the welded panels provide a higher buckling strength and lower weight compared with the classical riveted designs. The key factor for the application of laser-welded AA2198 structures is the availability of reliable data for the assessment of their damage tolerance behavior. In the research presented, the mechanical properties with regard to fatigue and fatigue crack propagation of laser beamwelded AA2198 joints and four-stringer panels were investigated. It was found that the fatigue endurance limit of laser beamwelded AA2198T3 is approximately 25 % below the endurance limit of the base material. With regard to the fatigue crack propagation behavior, the laser beam welded four-stringer panels with T-joints show a fatigue life increased by a factor of 1.7 compared with the base material. This work shows that high-quality laser beam welds of AA2198 can be produced on a large scale using the laser beam welding facilities of the Helmholtz-Zentrum Geesthacht.


Materials Science Forum | 2016

Fiber Laser Beam Welding of Ti-6242 - Effect of Processing Parameters on Microstructural and Mechanical Properties

Nikolai Kashaev; Dmitry Pugachev; Stefan Riekehr; Volker Ventzke

The present work investigates the effects of laser beam power, focus position and advance speed on the geometry, microstructure and mechanical properties of fiber laser beam welded Ti-6Al-2Sn-4Zr-2Mo (denoted as Ti-6242) butt joints used for high temperature applications. Detailed microstructural and mechanical studies were performed on welds produced using optimized parameters (a laser beam power of 5 kW, a focus position of 0.0 mm and an advance speed of 6.2 m/min). The Ti-6242 base material is characterized by a globular (α+β) microstructure. The heat input during laser beam welding led to the formation of a martensitic α’-phase fusion zone. The heat affected zone consisted of globular grains and acicular crystallites. These local transformations were connected with a change in the micro-texture, average grain size and β-phase content. Furthermore, the microhardness increased from 330 HV 0.3 to 450 HV 0.3 due to the martensitic transformation. The mechanical behavior of the laser beam welded Ti-6242 butt joint loaded in tension was determined by the properties of the Ti-6242 base material. The local increase in hardness provided a shielding effect that protected the Ti-6242 butt joint against mechanical damage.


Materials Science Forum | 2014

Fatigue, Fatigue Crack Propagation and Mechanical Fracture Behaviour of Laser Beam-Welded AZ31 Magnesium Sheets

Nikolai Kashaev; Stefan Riekehr; Manfred Horstmann; Volker Ventzke

Weight reduction is the main driving force in automotive and aircraft structural design. As a result, magnesium alloys, with their high potential for lightweight construction, have attracted a considerable amount of industrial attention. The determining criterion for the structural applications of magnesium alloys is the availability of efficient joining technologies for the construction of lightweight structures and the availability of reliable data for the assessment of their damage tolerance behaviour. Laser beam welding (LBW), as a high-speed and easily controllable process, allows the welding of complex geometric forms that are optimised in terms of mechanical stiffness, strength, production velocity and visual quality. The work accomplished in this study addresses the challenges of the LBW process for typical joint configurations using the magnesium alloy AZ31HP: butt joints, T joints and overlap joints. LBW processes were developed for use with a 3.3-kW Nd:YAG laser to optimise the mechanical performance of such joints with respect to tensile strength, fatigue, fatigue crack propagation and mechanical fracture behaviour. The relationships between the LBW process and the microstructural and mechanical properties of welds were established. Compared to state-of-the-art aerospace alloys, AZ31HP demonstrates that magnesium alloys have potential for use in structural applications, with AZ31HP being comparable to AA2024T351 and AA6061T6. Welded AZ31HP exhibits better crack resistance than the base material, so fully welded integral structures made from magnesium alloys can be used in lightweight construction.

Collaboration


Dive into the Nikolai Kashaev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norbert Huber

Hamburg University of Technology

View shared research outputs
Top Co-Authors

Avatar

Peter Staron

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Karanika

Hellenic Aerospace Industry

View shared research outputs
Top Co-Authors

Avatar

Andreas Stark

Hamburg University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge