Nikolai Piskunov
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nikolai Piskunov.
Publications of the Astronomical Society of the Pacific | 2011
Jason T. Wright; Onsi Fakhouri; Geoffrey W. Marcy; Eunkyu Han; Ying Feng; John Asher Johnson; Andrew W. Howard; Debra A. Fischer; Jeff A. Valenti; Jay Anderson; Nikolai Piskunov
We present a database of well-determined orbital parameters of exoplanets, and their host stars’ properties. This database comprises spectroscopic orbital elements measured for 427 planets orbiting 363 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The database is available in a searchable, filterable, and sortable form online through the Exoplanets Data Explorer table, and the data can be plotted and explored through the Exoplanet Data Explorer plotter. We use the Data Explorer to generate publication-ready plots, giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent correlation between mass and period in exoplanet orbits, the different selection biases between radial velocity and transit surveys, and that the multiplanet systems show a distinct semimajor-axis distribution from apparently singleton systems.
Astronomy and Astrophysics | 2002
Nikolai Piskunov; Jeff A. Valenti
We describe advanced image processing algorithms, implemented in a data analysis package for conven- tional and cross-dispersed echelle spectra. Comparisons with results from other packages illustrate the outstanding quality of the new REDUCE package, particularly in terms of resulting noise level and treatment of CCD defects and cosmic ray spikes. REDUCE can be adapted relatively easily to handle a variety of instrument types, including spec- trographs with prism or grating cross-dispersers, possibly fed by a ber or image slicer, etc. In addition to reduced spectra, an accurate spatial prole is recovered, providing valuable information about the spectrograph PSF and simplifying scattered light corrections.
Astronomy and Astrophysics | 2010
Oleg Kochukhov; Vitalii Makaganiuk; Nikolai Piskunov
Context. Least-squares deconvolution (LSD) is a powerful method of extracting high-precision average line profiles from the stellar intensity and polarization spectra. This technique is widely used for detection, characterization, and detailed mapping of the temperature, magnetic, and chemical abundance structures on the surfaces of stars. Aims. Despite its common usage, the LSD method is poorly documented and has never been tested with realistic synthetic spectra. In this study we revisit the key assumptions of the LSD technique, clarify its numerical implementation, discuss possible improvements and give recommendations of how to make LSD results understandable and reproducible. We also address the problem of interpretation of the moments and shapes of the LSD profiles in terms of physical parameters. Methods. We have developed an improved, multiprofile version of LSD (iLSD) and have extended the deconvolution procedure to linear polarization analysis taking into account anomalous Zeeman splitting of spectral lines. The iLSD method is applied to the theoretical Stokes parameter spectra computed for a wide wavelength interval containing all relevant spectral lines. We test various methods of interpreting the mean profiles, investigating how coarse approximations of the multiline technique translate into errors of the derived parameters. Results. We find that, generally, the Stokes parameter LSD profiles do not behave as a real spectral line with respect to the variation of magnetic field and elemental abundance. This problem is especially prominent for the Stokes I (intensity) variation with abundance and Stokes Q (linear polarization) variation with magnetic field. At the same time, the Stokes V (circular polarization) LSD spectra closely resemble the profile of a properly chosen synthetic line for the magnetic field strength up to 1 kG. The longitudinal field estimated from the Stokes V LSD profile is accurate to within 10% for the field strength below 5 kG and to within a few percent for the fields weaker than 1 kG. Our iLSD technique offers clear advantages over the standard LSD method in the individual analysis of different chemical elements. Conclusions. We conclude that the usual method of interpreting the LSD profiles by assuming that they are equivalent to a real spectral line gives satisfactory results only in a limited parameter range and thus should be applied with caution. A more trustworthy approach is to abandon the single-line approximation of the average profiles and apply LSD consistently to observations and synthetic spectra.
Nature | 2006
A. Korn; F. Grundahl; O. Richard; Paul Barklem; Ludmila Mashonkina; Remo Collet; Nikolai Piskunov; Bengt Gustafsson
The measurement of the cosmic microwave background has strongly constrained the cosmological parameters of the Universe. When the measured density of baryons (ordinary matter) is combined with standard Big Bang nucleosynthesis calculations, the amounts of hydrogen, helium and lithium produced shortly after the Big Bang can be predicted with unprecedented precision. The predicted primordial lithium abundance is a factor of two to three higher than the value measured in the atmospheres of old stars. With estimated errors of 10 to 25%, this cosmological lithium discrepancy seriously challenges our understanding of stellar physics, Big Bang nucleosynthesis or both. Certain modifications to nucleosynthesis have been proposed, but found experimentally not to be viable. Diffusion theory, however, predicts atmospheric abundances of stars to vary with time, which offers a possible explanation of the discrepancy. Here we report spectroscopic observations of stars in the metal-poor globular cluster NGC 6397 that reveal trends of atmospheric abundance with evolutionary stage for various elements. These element-specific trends are reproduced by stellar-evolution models with diffusion and turbulent mixing. We thus conclude that diffusion is predominantly responsible for the low apparent stellar lithium abundance in the atmospheres of old stars by transporting the lithium deep into the star.
The Astrophysical Journal | 2010
Andrew W. Howard; John Asher Johnson; Geoffrey W. Marcy; Debra A. Fischer; Jason T. Wright; David Bernat; Gregory W. Henry; Kathryn M. G. Peek; Howard Isaacson; Kevin Apps; Michael Endl; William D. Cochran; Jeff A. Valenti; Jay Anderson; Nikolai Piskunov
We present precise Doppler measurements of four stars obtained during the past decade at Keck Observatory by the California Planet Survey (CPS). These stars, namely, HD 34445, HD 126614, HD 13931, and Gl 179, all show evidence for a single planet in Keplerian motion. We also present Doppler measurements from the Hobby-Eberly Telescope (HET) for two of the stars, HD 34445 and Gl 179, that confirm the Keck detections and significantly refine the orbital parameters. These planets add to the statistical properties of giant planets orbiting near or beyond the ice line, and merit follow-up by astrometry, imaging, and space-borne spectroscopy. Their orbital parameters span wide ranges of planetary minimum mass (M sin i = 0.38-1.9 M_(Jup)), orbital period (P = 2.87-11.5 yr), semimajor axis (a = 2.1-5.2 AU), and eccentricity (e = 0.02-0.41). HD 34445 b (P = 2.87 yr, M sin i = 0.79 M_(Jup), e = 0.27) is a massive planet orbiting an old, G-type star. We announce a planet, HD 126614 Ab, and an M dwarf, HD 126614 B, orbiting the metal-rich star HD 126614 (which we now refer to as HD 126614 A). The planet, HD 126614 Ab, has minimum mass M sin i = 0.38 M_(Jup) and orbits the stellar primary with period P = 3.41 yr and orbital separation a = 2.3 AU. The faint M dwarf companion, HD 126614 B, is separated from the stellar primary by 489 mas (33 AU) and was discovered with direct observations using adaptive optics and the PHARO camera at Palomar Observatory. The stellar primary in this new system, HD 126614 A, has the highest measured metallicity ([Fe/H] = +0.56) of any known planet-bearing star. HD 13931 b (P = 11.5 yr, M sin i = 1.88 M_(Jup), e = 0.02) is a Jupiter analog orbiting a near solar twin. Gl 179 b (P = 6.3 yr, M sin i = 0.82 M Jup, e = 0.21) is a massive planet orbiting a faint M dwarf. The high metallicity of Gl 179 is consistent with the planet-metallicity correlation among M dwarfs, as documented recently by Johnson & Apps.
Astronomy and Astrophysics | 2002
Nikolai Piskunov; Oleg Kochukhov
We present an investigation of the magnetic field geometries and inhomogeneous distribution of chemical elements in the atmospheres of peculiar A and B stars. Our study combines high-quality spectroscopic and spectropolarimetric stellar observations with the development and application of novel techniques for theoretical interpretation of the shapes and variability of stellar line profiles. In particular, we extend the method of Doppler imaging to the analysis of spectra in the four Stokes parameters, making it possible to derive detailed and reliable stellar magnetic maps simultaneously with the imaging chemical inhomogeneities.The magnetic Doppler imaging is applied to study of magnetic topologies and distributions of chemical elements in the peculiar stars α2 CVn and 53 Cam. We found that the magnetic field geometry of 53 Cam is considerably more complex than a low-order multipolar topology, commonly assumed for magnetic A and B stars. Our Doppler imaging analysis also led to a discovery and study of spots of enhanced mercury abundance in the atmosphere of α And, a star where the presence of a global magnetic field is unlikely.The ESO 3.6-m telescope is used to collect unique, very high spectral- and time-resolution observations of rapidly oscillating peculiar A (roAp) stars and to reveal line profile variations due to stellar pulsations. We present a detailed characterization of the spectroscopic pulsational behaviour and demonstrate a remarkable diversity of pulsations in different spectral lines. The outstanding variability of the lines of rare-earth elements is used to study propagation of pulsation waves through the stellar atmospheres and identify pulsation modes. This analysis led to a discovery of a non-axisymmetric character of pulsations in roAp stars.Our study of chemical stratification in the atmosphere of the roAp star γ Equ provides a compelling evidence for significant variation of the chemical composition with depth. We find a combined effect of extreme chemical anomalies and a growth of pulsation amplitude in the outermost atmospheric layers to be the most likely origin of the high-amplitude pulsational variations of the lines of rare-earth elements.Observations of cool magnetic CP stars are obtained with the ESO Very Large Telescope and are used for empirical investigation of the anomalies in the atmospheric temperature structure. We show that the core-wing anomaly of the hydrogen Balmer lines observed in some cool CP stars can be attributed to a hot layer at an intermediate atmospheric depth.
Astronomy and Astrophysics | 2002
T. Ryabchikova; Nikolai Piskunov; Oleg P. Kochukhov; V. Tsymbal; P. Mittermayer; W. W. Weiss
We present the evidence for abundance stratication in the atmosphere of the rapidly oscillating Ap star Equ. Ca, Cr, Fe, Ba, Si, Na seem to be overabundant in deeper atmospheric layers, but normal to underabundant in the upper layers with a transition in the typical line forming region of 1:5 < log5000 < 0:5. This stratication prole agrees well with diusion theory for Ca and Cr, developed for cool magnetic stars with a weak mass loss of 2:5 10 15 M yr 1 . Pr and Nd from the rare earth elements have an opposite prole. Their abundance is more than 6 dex higher above log5000 8:0 than in the deeper atmospheric layers. We further discuss the implications of abundance stratication in the context of radial velocity amplitudes and phases observed by Kochukhov & Ryabchikova (2001) for a variety of spectral lines and elements using high spectral and time resolved, high S/N observations.
Physica Scripta | 2015
T Ryabchikova; Nikolai Piskunov; Robert L. Kurucz; H C Stempels; Ulrike Heiter; Yu. V. Pakhomov; Paul Barklem
Vienna atomic line database (VALD) is a collection of critically evaluated laboratory parameters for individual atomic transitions, complemented by theoretical calculations. VALD is actively used by astronomers for stellar spectroscopic studies—model atmosphere calculations, atmospheric parameter determinations, abundance analysis etc. The two first VALD releases contained parameters for atomic transitions only. In a major upgrade of VALD—VALD3, publically available from spring 2014, atomic data was complemented with parameters of molecular lines. The diatomic molecules C2, CH, CN, CO, OH, MgH, SiH, TiO are now included. For each transition VALD provides species name, wavelength, energy, quantum number J and Lande-factor of the lower and upper levels, radiative, Stark and van der Waals damping factors and a full description of electronic configurarion and term information of both levels. Compared to the previous versions we have revised and verify all of the existing data and added new measurements and calculations for transitions in the range between 20 A and 200 microns. All transitions were complemented with term designations in a consistent way and electron configurations when available. All data were checked for consistency: listed wavelength versus Ritz, selection rules etc. A new bibliographic system keeps track of literature references for each parameter in a given transition throughout the merging process so that every selected data entry can be traced to the original source. The query language and the extraction tools can now handle various units, vacuum and air wavelengths. In the upgrade process we had an intensive interaction with data producers, which was very helpful for improving the quality of the VALD content.
The Astrophysical Journal | 2007
A. Korn; F. Grundahl; O. Richard; Lyudmila Mashonkina; Paul Barklem; Remo Collet; Bengt Gustafsson; Nikolai Piskunov
We present a homogeneous photometric and spectroscopic analysis of 18 stars along the evolutionary sequence of the metal-poor globular cluster NGC 6397 ([Fe/H] ≈ -2), from the main-sequence turnoff point to red giants below the bump. The spectroscopic stellar parameters, in particular stellar parameter differences between groups of stars, are in good agreement with broadband and Stromgren photometry calibrated on the infrared flux method. The spectroscopic abundance analysis reveals, for the first time, systematic trends of iron abundance with evolutionary stage. Iron is found to be 30% less abundant in the turnoff point stars than in the red giants. An abundance difference in lithium is seen between the turnoff point and warm subgiant stars. The impact of potential systematic errors on these abundance trends (stellar parameters, the hydrostatic and LTE approximations) is quantitatively evaluated and found not to alter our conclusions significantly. Trends for various elements (Li, Mg, Ca, Ti, and Fe) are compared with stellar structure models including the effects of atomic diffusion and radiative acceleration. Such models are found to describe the observed element-specific trends well, if extra (turbulent) mixing just below the convection zone is introduced. It is concluded that atomic diffusion and turbulent mixing are largely responsible for the subprimordial stellar lithium abundances of warm halo stars. Other consequences of atomic diffusion in old metal-poor stars are also discussed.
Astronomy and Astrophysics | 2002
Paul Barklem; H. C. Stempels; C. Allende Prieto; Oleg Kochukhov; Nikolai Piskunov; B. J. O'Mara
An analysis of H and H spectra in a sample of 30 cool dwarf and subgiant stars is presented using MARCS model atmospheres based on the most recent calculations of the line opacities. A detailed quantitative comparison of the solar flux spectra with model spectra shows that Balmer line prole shapes, and therefore the temperature structure in the line formation region, are best represented under the mixing length theory by any combination of a low mixing-length parameter and a low convective structure parameter y. A slightly lower eective temperature is obtained for the sun than the accepted value, which we attribute to errors in models and line opacities. The programme stars span temperatures from 4800 to 7100 K and include a small number of population II stars. Eective temperatures have been derived using a quantitative tting method with a detailed error analysis. Our temperatures nd good agreement with those from the Infrared Flux Method (IRFM) near solar metallicity but show dierences at low metallicity where the two available IRFM determinations themselves are in disagreement. Comparison with recent temperature determinations using Balmer lines by Fuhrmann (1998, 2000), who employed a dierent description of the wing absorption due to self-broadening, does not show the large dierences predicted by Barklem et al. (2000b). In fact, perhaps fortuitously, reasonable agreement is found near solar metallicity, while we nd signicantly cooler temperatures for low metallicity stars of around solar temperature.