Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolai Sobolevsky is active.

Publication


Featured researches published by Nikolai Sobolevsky.


Physics in Medicine and Biology | 2004

Ion beam transport in tissue-like media using the Monte Carlo code SHIELD-HIT

Irena Gudowska; Nikolai Sobolevsky; Pedro Andreo; Dževad Belkić; Anders Brahme

The development of the Monte Carlo code SHIELD-HIT (heavy ion transport) for the simulation of the transport of protons and heavier ions in tissue-like media is described. The code SHIELD-HIT, a spin-off of SHIELD (available as RSICC CCC-667), extends the transport of hadron cascades from standard targets to that of ions in arbitrary tissue-like materials, taking into account ionization energy-loss straggling and multiple Coulomb scattering effects. The consistency of the results obtained with SHIELD-HIT has been verified against experimental data and other existing Monte Carlo codes (PTRAN, PETRA), as well as with deterministic models for ion transport, comparing depth distributions of energy deposition by protons, 12C and 20Ne ions impinging on water. The SHIELD-HIT code yields distributions consistent with a proper treatment of nuclear inelastic collisions. Energy depositions up to and well beyond the Bragg peak due to nuclear fragmentations are well predicted. Satisfactory agreement is also found with experimental determinations of the number of fragments of a given type, as a function of depth in water, produced by 12C and 14N ions of 670 MeV u(-1), although less favourable agreement is observed for heavier projectiles such as 16O ions of the same energy. The calculated neutron spectra differential in energy and angle produced in a mimic of a Martian rock by irradiation with 12C ions of 290 MeV u(-1) also shows good agreement with experimental data. It is concluded that a careful analysis of stopping power data for different tissues is necessary for radiation therapy applications, since an incorrect estimation of the position of the Bragg peak might lead to a significant deviation from the prescribed dose in small target volumes. The results presented in this study indicate the usefulness of the SHIELD-HIT code for Monte Carlo simulations in the field of light ion radiation therapy.


Physics in Medicine and Biology | 2006

Calculation of stopping power ratios for carbon ion dosimetry

Oksana Geithner; Pedro Andreo; Nikolai Sobolevsky; G H Hartmann; Oliver Jäkel

Water-to-air stopping power ratio calculations for the ionization chamber dosimetry of clinical carbon ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used, which is a newly developed version where substantial modifications were implemented on its predecessor SHIELD-HIT v1 (Gudowska et al 2004 Phys. Med. Biol. 49 1933-58). The code was completely rewritten replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe-Bloch formula, thus widening its range for medical dosimetry applications. In addition, the code includes optionally MSTAR and ICRU-73 stopping power data. The fragmentation model was verified and its parameters were also adjusted. The present code version shows excellent agreement with experimental data. It has been used to compute the physical quantities needed for the calculation of stopping power ratios, s(water,air), of carbon beams. Compared with the recommended constant value given in the IAEA Code of Practice, the differences found in the present investigations varied between 0.5% and 1% at the plateau region, respectively for 400 MeV/u and 50 MeV/u beams, and up to 2.3% in the vicinity of the Bragg peak for 50 MeV/u.


Physics in Medicine and Biology | 2012

Optimizing SHIELD-HIT for carbon ion treatment

David C. Hansen; Armin Lühr; Nikolai Sobolevsky; Niels Bassler

The SHIELD-HIT Monte Carlo transport code has been widely used in particle therapy, but has previously shown some discrepancies, when compared with experimental data. In this work, the inelastic nuclear cross sections of SHIELD-HIT are calibrated to experimental data for carbon ions. In addition, the models for nuclear fragmentation were adjusted to experiments, for the partial charge-changing cross section of carbon ions in water. Comparison with fragmentation yield experiments for carbon and neon primaries were made for validation. For carbon primaries, excellent agreement between simulation and experiment was observed, with only minor discrepancies. For neon primaries, the agreement was also good, but larger discrepancies were observed, which require further investigation. In conclusion, the current version SHIELD-HIT10A is well suited for simulating problems arising in particle therapy for clinical ion beams.


Acta Oncologica | 2011

Fluence correction factors and stopping power ratios for clinical ion beams

Armin Lühr; David C. Hansen; Nikolai Sobolevsky; Hugo Palmans; Séverine Rossomme; Niels Bassler

Abstract Background. In radiation therapy, the principal dosimetric quantity of interest is the absorbed dose to water. Therefore, a dose conversion to dose to water is required for dose deposited by ion beams in other media. This is in particular necessary for dose measurements in plastic phantoms for increased positioning accuracy, graphite calorimetry being developed as a primary standard for dose to water dosimetry, but also for the comparison of dose distributions from Monte Carlo simulations with those of pencil beam algorithms. Material and methods. In the conversion of absorbed dose to phantom material to absorbed dose to water the water-to-material stopping power ratios (STPR) and the fluence correction factors (FCF) for the full charged particle spectra are needed. We determined STPR as well as FCF for water to graphite, bone (compact), and PMMA as a function of water equivalent depth, zw, with the Monte Carlo code SHIELD-HIT10A. Simulations considering all secondary ions were performed for primary protons as well as carbon, nitrogen and oxygen ions with a total range of 3 cm, 14.5 cm and 27 cm as well as for two spread-out Bragg-peaks (SOBP). STPR as a function of depth are also compared to a recently proposed analytical formula. Results. The STPR are of the order of 1.022, 1.070, and 1.112 for PMMA, bone, and graphite, respectively. STPR vary only little with depth except close to the total range of the ion and they can be accurately approximated with an analytical formula. The amplitude of the FCF depends on the non-elastic nuclear interactions and it is unity if these interactions are turned off in the simulation. Fluence corrections are of the order of a percent becoming more pronounced for larger depths resulting in dose difference of the order of 5% around 25 cm. The same order of magnitude is observed for SOBP. Conclusions. We conclude that for ions with small total range (zw-eq ≤3 cm) dosimetry without applying FCF could in principle be performed in phantoms of materials other than water without a significant loss of accuracy. However, in clinical high-energy ion beams with penetration depths zw-eq ≥3 cm, where accurate positioning in water is not an issue, absorbed dose measurements should be directly performed in water or accurate values of FCF need to be established.


Medical Physics | 2009

Monte Carlo simulations on the water-to-air stopping power ratio for carbon ion dosimetry.

Katrin Henkner; Niels Bassler; Nikolai Sobolevsky; Oliver Jäkel

Many papers discussed the I value for water given by the ICRU, concluding that a value of about 80 +/- 2 eV instead of 67.2 eV would reproduce measured ion depth-dose curves. A change in the I value for water would have an effect on the stopping power and, hence, on the water-to-air stopping power ratio, which is important in clinical dosimetry of proton and ion beams. For energies ranging from 50 to 330 MeV/u and for one spread out Bragg peak, the authors compare the impact of the I value on the water-to-air stopping power ratio. The authors calculate ratios from different ICRU stopping power tables and ICRU reports. The stopping power ratio is calculated via track-length dose calculation with SHIELD-HIT07. In the calculations, the stopping power ratio is reduced to a value of 1.119 in the plateau region as compared to the cited value of 1.13 in IAEA TRS-398. At low energies the stopping power ratio increases by up to 6% in the last few tenths of a mm toward the Bragg peak. For a spread out Bragg peak of 13.5 mm width at 130 mm depth, the stopping power ratio increases by about 1% toward the distal end.


Physics in Medicine and Biology | 2011

Analytical expressions for water-to-air stopping-power ratios relevant for accurate dosimetry in particle therapy

Armin Lühr; David C. Hansen; Oliver Jäkel; Nikolai Sobolevsky; Niels Bassler

In particle therapy, knowledge of the stopping-power ratio (STPR) of the ion beam for water and air is necessary for accurate ionization chamber dosimetry. Earlier work has investigated the STPR for pristine carbon ion beams, but here we expand the calculations to a range of ions (1 ≤ z ≤ 18) as well as spread-out Bragg peaks (SOBPs) and provide a theoretical in-depth study with a special focus on the parameter regime relevant for particle therapy. The Monte Carlo transport code SHIELD-HIT is used to calculate complete particle-fluence spectra which are required for determining the STPR according to the recommendations of the International Atomic Energy Agency. The STPR at a depth d depends primarily on the average energy of the primary ions at d rather than on their charge z or absolute position in the medium. However, STPRs for different sets of stopping-power data for water and air recommended by the International Commission on Radiation Units and Measurements are compared, including also the recently revised data for water, yielding deviations up to 2% in the plateau region. In comparison, the influence of the secondary particle spectra on the STPR is about two orders of magnitude smaller in the whole region up till the practical range. The gained insights enable us to propose simple analytical expressions for the STPR for both pristine and SOBPs as a function of penetration depth depending parametrically on the practical range.


International Journal of Radiation Biology | 2012

Recent improvements in the SHIELD-HIT code.

David C. Hansen; Armin Lühr; Rochus Herrmann; Nikolai Sobolevsky; Niels Bassler

Abstract Purpose: The SHIELD-HIT Monte Carlo particle transport code has previously been used to study a wide range of problems for heavy-ion treatment and has been benchmarked extensively against other Monte Carlo codes and experimental data. Here, an improved version of SHIELD-HIT is developed concentrating on three objectives, namely: Enhanced functionality, improved efficiency, and a modification of employed physical models. Methodological developments: SHIELD-HIT (currently at version ‘10A’) is now equipped with an independent detector geometry, ripple filter implementations, and it is capable of using accelerator control files as a basis for the primaries. Furthermore, the code has been parallelized and efficiency is improved. The physical description of inelastic ion collisions has been modified. Results: The simulation of an experimental depth-dose distribution including a ripple filter reproduces experimental measurements with high accuracy. Conclusions: SHIELD-HIT is now faster, more user-friendly and accurate, and has an enhanced functionality with some features being currently unique to SHIELD-HIT. The possibility of data file exchange with existing treatment planning software for heavy-ion therapy allows for benchmarking under treatment conditions as well as extending the capabilities of treatment planning software.


Physics in Medicine and Biology | 2008

An analytical model for light ion pencil beam dose distributions: multiple scattering of primary and secondary ions.

Malin Hollmark; Irena Gudowska; Dževad Belkić; Anders Brahme; Nikolai Sobolevsky

An analytical algorithm based on the generalized Fermi-Eyges theory, amended for multiple Coulomb scattering and energy loss straggling, is used for calculation of the dose distribution of light ion beams in water. Pencil beam energy deposition distributions are derived for light ions by weighting a Monte Carlo (MC) calculated planar integral dose distribution with analytically calculated multiple scattering and range straggling distributions. The planar integral dose distributions are calculated using the MC code SHIELD-HIT07, in which multiple scattering and energy loss straggling processes are excluded. The contribution from nuclear reactions is included in the MC calculations. Multiple scattering processes are calculated separately for primary and secondary ions and parameters of the initial angular and radial spreads, and the covariance of these are derived by a least-square parameterization of the SHIELD-HIT07 data. The results from this analytical algorithm are compared to pencil beam dose distributions obtained from SHIELD-HIT07, where all processes are included, as well as to experimental data. The presented analytical approach allows for the accurate calculation of the spatial energy deposition distributions of ions of atomic numbers Z = 1 - 8.


Journal of Physics: Conference Series | 2014

SHIELD-HIT12A - a Monte Carlo particle transport program for ion therapy research

Niels Bassler; David C. Hansen; Armin Lühr; Bjarne Thomsen; J.B.B. Petersen; Nikolai Sobolevsky

Purpose: The Monte Carlo (MC) code SHIELD-HIT simulates the transport of ions through matter. Since SHIELD-HIT08 we added numerous features that improves speed, usability and underlying physics and thereby the user experience. The -A fork of SHIELD-HIT also aims to attach SHIELD-HIT to a heavy ion dose optimization algorithm to provide MC-optimized treatment plans that include radiobiology. Methods: SHIELD-HIT12A is written in FORTRAN and carefully retains platform independence. A powerful scoring engine is implemented scoring relevant quantities such as dose and track-average LET. It supports native formats compatible with the heavy ion treatment planning system TRiP. Stopping power files follow ICRU standard and are generated using the libdEdx library, which allows the user to choose from a multitude of stopping power tables. Results: SHIELD-HIT12A runs on Linux and Windows platforms. We experienced that new users quickly learn to use SHIELD-HIT12A and setup new geometries. Contrary to previous versions of SHIELD-HIT, the 12A distribution comes along with easy-to-use example files and an English manual. A new implementation of Vavilov straggling resulted in a massive reduction of computation time. Scheduled for later release are CT import and photon-electron transport. Conclusions: SHIELD-HIT12A is an interesting alternative ion transport engine. Apart from being a flexible particle therapy research tool, it can also serve as a back end for a MC ion treatment planning system. More information about SHIELD-HIT12A and a demo version can be found on http://www.shieldhit.org.


Physics in Medicine and Biology | 2012

Evaluation of nuclear reaction cross sections and fragment yields in carbon beams using the SHIELD-HIT Monte Carlo code : Comparison with experiments

Martha Hultqvist; Marta Lazzeroni; A. S. Botvina; Irena Gudowska; Nikolai Sobolevsky; Anders Brahme

In light ion therapy, the knowledge of the spectra of both primary and secondary particles in the target volume is needed in order to accurately describe the treatment. The transport of ions in matter is complex and comprises both atomic and nuclear processes involving primary and secondary ions produced in the cascade of events. One of the critical issues in the simulation of ion transport is the modeling of inelastic nuclear reaction processes, in which projectile nuclei interact with target nuclei and give rise to nuclear fragments. In the Monte Carlo code SHIELD-HIT, inelastic nuclear reactions are described by the Many Stage Dynamical Model (MSDM), which includes models for the different stages of the interaction process. In this work, the capability of SHIELD-HIT to simulate the nuclear fragmentation of carbon ions in tissue-like materials was studied. The value of the parameter κ, which determines the so-called freeze-out volume in the Fermi break-up stage of the nuclear interaction process, was adjusted in order to achieve better agreement with experimental data. In this paper, results are shown both with the default value κ = 1 and the modified value κ = 10 which resulted in the best overall agreement. Comparisons with published experimental data were made in terms of total and partial charge-changing cross-sections generated by the MSDM, as well as integral and differential fragment yields simulated by SHIELD-HIT in intermediate and thick water targets irradiated with a beam of 400 MeV u(-1) (12)C ions. Better agreement with the experimental data was in general obtained with the modified parameter value (κ = 10), both on the level of partial charge-changing cross-sections and fragment yields.

Collaboration


Dive into the Nikolai Sobolevsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Armin Lühr

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R.A. Nymmik

Moscow State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oliver Jäkel

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

S.P. Ryumin

Moscow State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge