Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolai W. F. Bode is active.

Publication


Featured researches published by Nikolai W. F. Bode.


Journal of the Royal Society Interface | 2011

Limited interactions in flocks: relating model simulations to empirical data

Nikolai W. F. Bode; Daniel W. Franks; A. Jamie Wood

The mechanism of self-organization resulting in coordinated collective motion has received wide attention from a range of scientists interested in both its technical and biological relevance. Models have been highly influential in highlighting how collective motion can be produced from purely local interactions between individuals. Typical models in this field are termed ‘metric’ because each individual only reacts to conspecifics within a fixed distance. A recent large-scale study has, however, provided evidence that interactions ruling collective behaviour occur between a fixed number of nearest neighbours (‘topological’ framework). Despite their importance in clarifying the nature of the mechanism underlying animal interactions, these findings have yet to be produced by either metric or topological models. Here, we present an original individual-based model of collective animal motion that reproduces the previous findings. Our approach bridges the current gap between previous model analysis and recent evidence, and presents a framework for further study.


Proceedings of the Royal Society of London B: Biological Sciences | 2010

How perceived threat increases synchronization in collectively moving animal groups

Nikolai W. F. Bode; J. J. Faria; Daniel W. Franks; Jens Krause; A. J. Wood

Nature is rich with many different examples of the cohesive motion of animals. Previous attempts to model collective motion have primarily focused on group behaviours of identical individuals. In contrast, we put our emphasis on modelling the contributions of different individual-level characteristics within such groups by using stochastic asynchronous updating of individual positions and orientations. Our model predicts that higher updating frequency, which we relate to perceived threat, leads to more synchronized group movement, with speed and nearest-neighbour distributions becoming more uniform. Experiments with three-spined sticklebacks (Gasterosteus aculeatus) that were exposed to different threat levels provide strong empirical support for our predictions. Our results suggest that the behaviour of fish (at different states of agitation) can be explained by a single parameter in our model: the updating frequency. We postulate a mechanism for collective behavioural changes in different environment-induced contexts, and explain our findings with reference to confusion and oddity effects.


Animal Behaviour | 2011

The impact of social networks on animal collective motion

Nikolai W. F. Bode; A. Jamie Wood; Daniel W. Franks

Many group-living animals show social preferences for relatives, familiar conspecifics or individuals of similar attributes such as size, personality or sex. How such preferences could affect the collective motion of animal groups has been rather unexplored. We present a general model of collective animal motion that includes social connections as preferential reactions between individuals. Our conceptual examples illustrate the possible impact of underlying social networks on the collective motion of animals. Our approach shows that the structure of these networks could influence: (1) the cohesion of groups; (2) the spatial position of individuals within groups; and (3) the hierarchical dynamics within such groups. We argue that the position of individuals within a social network and the social network structure of populations could have important fitness implications for individual animals. Counterintuitive results from our conceptual examples show that social structures can result in unexpected group dynamics. This sharpens our understanding of the way in which collective movement can be interpreted as a result of social interactions.


Behavioral Ecology and Sociobiology | 2011

Social networks and models for collective motion in animals

Nikolai W. F. Bode; A. Jamie Wood; Daniel W. Franks

The theory of collective motion and the study of animal social networks have, each individually, received much attention. Currently, most models of collective motion do not consider social network structure. The implications for considering collective motion and social networks together are likely to be important. Social networks could determine how populations move in, split up into and form separate groups (social networks affecting collective motion). Conversely, collective movement could change the structure of social networks by creating social ties that did not exist previously and maintaining existing ties (collective motion affecting social networks). Thus, there is a need to combine the two areas of research and examine the relationship between network structure and collective motion. Here, we review different modelling approaches that combine social network structures and collective motion. Although many of these models have not been developed with ecology in mind, they present a current context in which a biologically relevant theory can be developed. We argue that future models in ecology should take inspiration from empirical observations and consider different mechanisms of how social preferences could be expressed in collectively moving animal groups.


Animal Behaviour | 2013

Human exit route choice in virtual crowd evacuations

Nikolai W. F. Bode; Edward A. Codling

The collective behaviour of human crowds emerges from the local interactions of individuals. To understand human crowds we therefore need to identify the behavioural rules individual pedestrians follow. This is crucial for the control of emergency evacuations from confined spaces, for example. At a microscopic level we seek to predict the next step of pedestrians based on their local environment. However, we also have to consider ‘tactical-level’ individual behaviour that is not an immediate response to the local environment, such as the choice between different routes to exit a building. We used an interactive virtual environment to study human exit route decisions in simulated evacuations. Participants had to escape from a building and had to choose between different exit routes in the presence of evacuating simulated agents. We found no inherent preference for familiar routes, but under a stress-inducing treatment, subjects were more likely to display behaviour in their route choice that was detrimental to their evacuation time. Most strikingly, subjects were less likely to avoid a congested exit by changing their original decision to move towards it under this treatment. Age and gender had clear effects on reaction times in the virtual environment.


The American Naturalist | 2012

Distinguishing social from nonsocial navigation in moving animal groups.

Nikolai W. F. Bode; Daniel W. Franks; A. Jamie Wood; Julius J. B. Piercy; Darren P. Croft; Edward A. Codling

Many animals, such as migrating shoals of fish, navigate in groups. Knowing the mechanisms involved in animal navigation is important when it comes to explaining navigation accuracy, dispersal patterns, population and evolutionary dynamics, and consequently, the design of conservation strategies. When navigating toward a common target, animals could interact socially by sharing available information directly or indirectly, or each individual could navigate by itself and aggregations may not disperse because all animals are moving toward the same target. Here we present an analysis technique that uses individual movement trajectories to determine the extent to which individuals in navigating groups interact socially, given knowledge of their target. The basic idea of our approach is that the movement directions of individuals arise from a combination of responses to the environment and to other individuals. We estimate the relative importance of these responses, distinguishing between social and nonsocial interactions. We develop and test our method, using simulated groups, and we demonstrate its applicability to empirical data in a case study on groups of guppies moving toward shelter in a tank. Our approach is generic and can be extended to different scenarios of animal group movement.


Journal of the Royal Society Interface | 2013

Human responses to multiple sources of directional information in virtual crowd evacuations

Nikolai W. F. Bode; Armel Ulrich Kemloh Wagoum; Edward A. Codling

The evacuation of crowds from buildings or vehicles is one example that highlights the importance of understanding how individual-level interactions and decision-making combine and lead to the overall behaviour of crowds. In particular, to make evacuations safer, we need to understand how individuals make movement decisions in crowds. Here, we present an evacuation experiment with over 500 participants testing individual behaviour in an interactive virtual environment. Participants had to choose between different exit routes under the influence of three different types of directional information: static information (signs), dynamic information (movement of simulated crowd) and memorized information, as well as the combined effect of these different sources of directional information. In contrast to signs, crowd movement and memorized information did not have a significant effect on human exit route choice in isolation. However, when we combined the latter two treatments with additional directly conflicting sources of directional information, for example signs, they showed a clear effect by reducing the number of participants that followed the opposing directional information. This suggests that the signals participants observe more closely in isolation do not simply overrule alternative sources of directional information. Age and gender did not consistently explain differences in behaviour in our experiments.


Behavioral Ecology and Sociobiology | 2012

Leading from the front? Social networks in navigating groups

Nikolai W. F. Bode; Daniel W. Franks; A. Jamie Wood

In many group-living animals, leadership by only a fraction of the group members can be important for group navigation. It has been shown that subgroups of informed individuals can steer the remainder of the group without direct communication, resolving conflicts of interest through individual-to-individual interactions. We present a model for the navigation of collectively moving groups that includes preferential interactions between individuals as a way of imposing social network structures, known to be present in many species. We show that effective leadership can occur when leaders do not occupy frontal spatial positions and when navigation tendency is appropriately balanced with social position. Our model also shows that small minorities can dominate movement decisions if they have navigational knowledge combined with influential social network positions. Our findings highlight the mechanistic importance of social networks for the movement decisions of animal groups. We discuss the implications of our research for interpreting empirical observations.


PLOS ONE | 2015

Disentangling the Impact of Social Groups on Response Times and Movement Dynamics in Evacuations

Nikolai W. F. Bode; Stefan Holl; Wolfgang Mehner; Armin Seyfried

Crowd evacuations are paradigmatic examples for collective behaviour, as interactions between individuals lead to the overall movement dynamics. Approaches assuming that all individuals interact in the same way have significantly improved our understanding of pedestrian crowd evacuations. However, this scenario is unlikely, as many pedestrians move in social groups that are based on friendship or kinship. We test how the presence of social groups affects the egress time of individuals and crowds in a representative crowd evacuation experiment. Our results suggest that the presence of social groups increases egress times and that this is largely due to differences at two stages of evacuations. First, individuals in social groups take longer to show a movement response at the start of evacuations, and, second, they take longer to move into the vicinity of the exits once they have started to move towards them. Surprisingly, there are no discernible time differences between the movement of independent individuals and individuals in groups directly in front of the exits. We explain these results and discuss their implications. Our findings elucidate behavioural differences between independent individuals and social groups in evacuations. Such insights are crucial for the control of crowd evacuations and for planning mass events.


Royal Society Open Science | 2015

Information use by humans during dynamic route choice in virtual crowd evacuations

Nikolai W. F. Bode; A. U. Kemloh Wagoum; Edward A. Codling

We conducted a computer-based experiment with over 450 human participants and used a Bayesian model selection approach to explore dynamic exit route choice mechanisms of individuals in simulated crowd evacuations. In contrast to previous work, we explicitly explore the use of time-dependent and time-independent information in decision-making. Our findings suggest that participants tended to base their exit choices on time-dependent information, such as differences in queue lengths and queue speeds at exits rather than on time-independent information, such as differences in exit widths or exit route length. We found weak support for similar decision-making mechanisms under a stress-inducing experimental treatment. However, under this treatment participants were less able or willing to adjust their original exit choice in the course of the evacuation. Our experiment is not a direct test of behaviour in real evacuations, but it does highlight the role different types of information and stress play in real human decision-making in a virtual environment. Our findings may be useful in identifying topics for future study on real human crowd movements or for developing more realistic agent-based simulations.

Collaboration


Dive into the Nikolai W. F. Bode's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge