Nikolaos D. Kylafis
University of Crete
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nikolaos D. Kylafis.
Astronomy and Astrophysics | 2011
Cristina Popescu; Richard J. Tuffs; Michael A. Dopita; Joerg Fischera; Nikolaos D. Kylafis; Barry F. Madore
We present a self-consistent model of the spectral energy distributions (SEDs) of spiral galaxies from the ultraviolet (UV) to the mid-infrared (MIR)/far-infrared (FIR)/submillimeter (submm) based on a full radiative transfer calculation of the propagation of starlight in galaxy disks. This model predicts not only the total integrated energy absorbed in the UV/optical and re-emitted in the infrared/submm, but also the colours of the dust emission based on an explicit calculation of the strength and colour of the UV/optical radiation fields heating the dust, and incorporating a full calculation of the stochastic heating of small dust grains and PAH molecules. The geometry of the translucent components of the model is empirically constrained using the results from the radiation transfer analysis of Xilouris et al. on spirals in the middle range of the Hubble sequence, while the geometry of the optically thick components is constrained from physical considerations with a posteriori checks of the model predictions with observational data. Following the observational constraints, the model has both a distribution of diffuse dust associated with the old and young disk stellar populations as well as a clumpy component arising from dust in the parent molecular clouds in star forming regions. In accordance with the fragmented nature of dense molecular gas in typical star-forming regions, UV light from massive stars is allowed to either freely stream away into the diffuse medium in some fraction of directions or be geometrically blocked and locally absorbed in clumps. These geometrical constraints enable the dust emission to be predicted in terms of a minimum set of free parameters: the central face-on dust opacity in the B-band τ f B , a clumpiness factor F for the star-forming regions, the star-formation rate SFR, the normalised luminosity of the old stellar population old and the bulge-to-disk ratio B/D. We show that these parameters are almost orthogonal in their predicted effect on the colours of the dust/PAH emission. In most practical applications B/D will actually not be a free parameter but (together with the angular size θ gal and inclination i of the disk) act as a constraint derived from morphological decomposition of higher resolution optical images. This also extends the range of applicability of the model along the Hubble sequence. We further show that the dependence of the dust emission SED on the colour of the stellar photon field depends primarily on the ratio between the luminosities of the young and old stellar populations (as specified by the parameters SFR and old) rather than on the detailed colour of the emissions from either of these populations. The model is thereby independent of a priori assumptions of the detailed mathematical form of the dependence of SFR on time, allowing UV/optical SEDs to be dereddened without recourse to population synthesis models. Utilising these findings, we show how the predictive power of radiative transfer calculations can be combined with measurements of θ gal , i and B/D from optical images to self-consistently fit UV/optical-MIR/FIR/submm SEDs observed in large statistical surveys in a fast and flexible way, deriving physical parameters on an object-by-object basis. We also identify a non-parametric test of the fidelity of the model in practical applications through comparison of the model predictions for FIR colour and surface brightness with the corresponding observed quantities. This should be effective in identifying objects such as AGNs or star-forming galaxies with markedly different geometries to those of the calibrators of Xilouris et al. The results of the calculations are made available in the form of a large library of simulated dust emission SEDs spanning the whole parameter space of our model, together with the corresponding library of dust attenuation calculated using the same model.
The Astrophysical Journal | 1987
Nikolaos D. Kylafis; John N. Bahcall
A method for determining the dust distribution in edge-on, late Hubble type, spiral galaxies from their surface photometry is described. The method assumes that both the stars and the dust are distributed isothermally in the direction perpendicular to the galactic plane with scale heights z(s) and z(d) respectively, and exponentially in the radial direction with corresponding scale lengths h(s) and h(d). By comparing the observed surface photometry and the model calculations in which the radiative transfer is treated properly, z(s), z(d), h(s), and h(d) can be determined, as well as the optical depth along the line of sight and the central brightness. As a demonstration, the method is applied to NGC 891. The extension of the method to early-type spiral galaxies and to inclination angles less than 90 deg is described. 33 references.
The Astrophysical Journal | 2000
P. Reig; T. Belloni; M. van der Klis; Mariano Mendez; Nikolaos D. Kylafis; Eric C. Ford
We have used Rossi X-Ray Timing Explorer data to measure the lags between soft (2-5 keV) and hard (5-13 keV) photons and to study the aperiodic variability of the superluminal black hole candidate GRS 1915+105 during low-flux states. The power density spectra exhibit quasi-periodic oscillations (QPO) whose frequency increases with increasing count rate and varies in the frequency range 0.6-8 Hz. A correlation between the QPO frequency and the phase lag spectra is reported for the first time. This correlation is found for both the phase lag continuum and the phase lag at the QPO frequency. We find that as the QPO frequency moves to higher values the phase lags reverse sign from positive to negative. The absolute value of the lag always increases with photon energy. The negative (soft) lags are associated with a softer energy spectrum, whereas the positive (hard) lags are seen when the source is harder. We describe a possible scenario that may account for the change in the sign of the lags.
The Astrophysical Journal | 1981
Peter Goldreich; Nikolaos D. Kylafis
We predict that interstellar radio-frequency lines possess a few percent linear polarization, provided that (1) the radiative transition rate is at least comparable to the collision rate, (2) the optical depth is moderate. and anisotropic, and (3) the number of extrema of the velocity component along the line of sight through the source is small. If the Zeeman splitting exceeds both the collisional frequency and the radiative transition rate, then the polarization is aligned either perpendicular to or parallel to the projection of the magnetic field on the plane of the sky.
The Astrophysical Journal | 2013
J. Trumper; Konrad Dennerl; Nikolaos D. Kylafis; Ünal Ertan; A. L. Zezas
We propose that the quiescent emission of anomalous X-ray pulsars/soft gamma-ray repeaters (AXPs/SGRs) is powered by accretion from a fallback disk, requiring magnetic dipole fields in the range 1012-1013 G, and that the luminous hard tails of their X-ray spectra are produced by bulk-motion Comptonization in the radiative shock near the bottom of the accretion column. This radiation escapes as a fan beam, which is partly absorbed by the polar cap photosphere, heating it up to relatively high temperatures. The scattered component and the thermal emission from the polar cap form a polar beam. We test our model on the well-studied AXP 4U 0142+61, whose energy-dependent pulse profiles show double peaks, which we ascribe to the fan and polar beams. The temperature of the photosphere (kT ~ 0.4 keV) is explained by the heating effect. The scattered part forms a hard component in the polar beam. We suggest that the observed high temperatures of the polar caps of AXPs/SGRs, compared with other young neutron stars, are due to the heating by the fan beam. Using beaming functions for the fan beam and the polar beam and taking gravitational bending into account, we fit the energy-dependent pulse profiles and obtain the inclination angle and the angle between the spin axis and the magnetic dipole axis, as well as the height of the radiative shock above the stellar surface. We do not explain the high-luminosity bursts, which may be produced by the classical magnetar mechanism operating in super-strong multipole fields.
Astronomy and Astrophysics | 2008
Nikolaos D. Kylafis; I. E. Papadakis; P. Reig; Dimitrios Giannios; G. G. Pooley
Context. Some recent observational results impose significant constraints on all the models that have been proposed to explain the Galactic black-hole X-ray sources in the hard state. In particular, it has been found that during the hard state of Cyg X-1 the power-law photon number spectral index, Γ, is correlated with the average time lag, � tlag� , between hard and soft X-rays. Furthermore, the peak
Archive | 1991
Nikolaos D. Kylafis
The physics of astronomical masers and their connection with star-forming regions are reviewed. For a better understanding of the subject, a qualitative discussion is given of the basic concepts about masers. These are: Amplification, saturation, thermalization, beaming, apparent size, variability, line width and polarization. The difference between laboratory and astronomical masers is discussed and a few examples of the usefulness of astronomical masers are given. The basic requirements for the construction of a maser model are presented and the accuracy with which the various inputs are known is commented on. A qualitative discussion is given of the most common models, which are collisional and radiative. Specific pumping mechanisms for OH and H2O masers in star-forming regions are presented and criticized. The current status of the observations of these masers is reviewed and the implications on the theoretical models is discussed.
Monthly Notices of the Royal Astronomical Society | 2016
D. Blinov; Vasiliki Pavlidou; I. E. Papadakis; T. Hovatta; T. J. Pearson; I. Liodakis; G. V. Panopoulou; E. Angelakis; M. Baloković; H. K. Das; P. Khodade; S. Kiehlmann; O. G. King; A. J. Kus; Nikolaos D. Kylafis; Ashish A. Mahabal; A. Marecki; D. Modi; I. Myserlis; E. Paleologou; I. Papamastorakis; B. M. Pazderska; Eugeniusz Pazderski; Chaitanya V. Rajarshi; A. N. Ramaprakash; A. C. S. Readhead; P. Reig; K. Tassis; J. A. Zensus
We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane in the jet rest frame; (4) it is likely that distributions of amplitudes and durations of the rotations have physical upper bounds, so arbitrarily long rotations are not realized in nature.
Astronomy and Astrophysics | 2010
J. Trumper; A. Zezas; Ünal Ertan; Nikolaos D. Kylafis
Context. Anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) exhibit characteristic X-ray luminosities (both soft and hard) of around 10 35 erg s −1 and characteristic power-law, hard X-ray spectra extending to about 200 keV. Two AXPs also exhibit pulsed radio emission. Aims. Assuming that AXPs and SGRs accrete matter from a fallback disk, we attempt to explain both the soft and the hard X-ray emission as the result of the accretion process. We also attempt to explain their radio emission or the lack of it. Methods. We test the hypothesis that the power-law, hard X-ray spectra are produced in the accretion flow mainly by bulk-motion Comptonization of soft photons emitted at the neutron star surface. Fallback disk models invoke surface dipole magnetic fields of 10 12 −10 13 G, which is what we assume here. Results. Unlike normal X-ray pulsars, for which the accretion rate is highly super-Eddington, the accretion rate is approximately Eddington in AXPs and SGRs and thus the bulk-motion Comptonization operates efficiently. As an illustrative example we reproduce both the hard and the soft X-ray spectra of AXP 4U 0142+61 well using the XSPEC package compTB. Conclusions. Our model seems to explain both the hard and the soft X-ray spectra of AXPs and SGRs, as well as their radio emission or the lack of it, in a natural way. It might also explain the short bursts observed in these sources. On the other hand, it cannot explain the giant X-ray outbursts observed in SGRs, which may result from the conversion of magnetic energy in local multipole fields.
Astronomy and Astrophysics | 2003
P. Reig; Nikolaos D. Kylafis; Dimitris Giannios
Most, probably all, accreting binaries that are believed to contain a black-hole emit radio waves when they are in the low/hard state. Whenever this radio emission has been resolved, a jet-like structure has become apparent. We propose that Compton upscattering of low-energy photons in the jet can explain both the energy spectra and the time lags versus Fourier frequency observed in the low/hard state of black-hole systems. The soft photons originate in the inner part of the accretion disk. We have performed Monte Carlo simulations of Compton upscattering in a jet and have found that for a rather wide range of values of the parameters we can obtain power-law high-energy X-ray spectra with photon-number index in the range 1.5-2 and power-law time lags versus Fourier frequency with index ∼0.7. The black-hole source Cyg X-1 in the low/hard state is well described by our model.