Nikolaos G. Tsiropoulos
University of Thessaly
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nikolaos G. Tsiropoulos.
Journal of Agricultural and Food Chemistry | 2010
Evangelos Karanasios; Nikolaos G. Tsiropoulos; Dimitrios G. Karpouzas; Constantinos Ehaliotis
Biobeds have been used in northern Europe for minimizing point source contamination of water resources by pesticides. However, little is known regarding their use in southern Europe where edaphoclimatic conditions and agriculture practices significantly differ. A first step toward their adaptation in southern Europe is the use of low-cost and easily available substrates as biomixture components. This study investigated the possibility of replacing peat with agricultural composts in the biomixture. Five composts from local substrates including olive leaves, cotton crop residues, cotton seeds, spent mushroom substrate, and commercial sea wrack were mixed with topsoil and straw (1:1:2). Degradation of a mixture of pesticides (dimethoate, indoxacarb, buprofezin, terbuthylazine, metribuzin, metalaxyl-M, iprodione, azoxystrobin) at two dose rates was tested in the compost biomixtures (BX), in corresponding peat biomixtures (OBX), and in soil. Adsorption-desorption of selected pesticides were also studied. Pesticide residues were determined by gas chromatography with nitrogen-phosphorus detector, except indoxacarb, which was determined with a microelectron capture detector. Overall, BX degraded the studied pesticides at rates markedly higher than those observed in soil and OBX, in which the slowest degradation rates were evident. Overall, the olive leaf compost biomixture showed the highest degradation capacity. Adsorption studies showed that OBX and BX had higher adsorption affinity compared to soil. Desorption experiments revealed that pesticide adsorption in biomixtures was not entirely reversible. The results suggest that substitution of peat with local composts will lead to optimization of the biobed system for use in Mediterranean countries.
Journal of Chromatography A | 2009
Elpiniki G. Amvrazi; Nikolaos G. Tsiropoulos
In the present work the single-drop microextraction (SDME) technique coupled with GC-NPD and GC-ECD was evaluated for the determination of multi-class pesticides in vegetables. The donor sample solution preparation was optimized by testing different mixtures of solvents and dilutions with water. The SDME procedure was optimized by controlling drop organic solvent, drop volume, agitation, and exposure time. The optimum sample preparation was achieved with the use of a mixture of acetone/H(2)O (10/90, v/v) in donor sample solution preparation and the consequent SDME using a toluene drop under mild stirring for 25min. The efficiency of the extraction process was studied in fortified tomato and courgette samples and matrix effects were further estimated. The proposed method showed good linearity, limits of detection at the sub-microgkg(-1) level and high precision (RSD <15%) and was applied with success in real vegetable samples showing that SDME can be a promising way for sample preparation in pesticide residue analysis.
Biodegradation | 2012
Evangelos Karanasios; Nikolaos G. Tsiropoulos; Dimitrios G. Karpouzas
Point source contamination of natural water resources by pesticides constitutes a serious problem and on-farm biopurification systems (BPS) were introduced to resolve it. This paper reviews the processes and parameters controlling BPS depuration efficiency and reports on recent biotechnological advances which have been used for enhancing BPS performance. Biomixture composition and water management are the two factors which either individually or through their interactions control the depuration performance of BPS. Which process (biodegradation or adsorption) will dominate pesticides dissipation in BPS depends on biomixture composition and the physicochemical properties of the pesticides. Biotechnological interventions such as augmentation with pesticide-degrading microbes or pesticide-primed matrices have resulted in enhanced biodegradation performance of BPS. Despite all these advancement in BPS research, there are still several issues which should be resolved to facilitate their full implementation. Safe handling and disposal of the spent biomixture is a key practical issue which needs further research. The use of BPS for the depuration of wastewaters from post-farm activities such as postharvest treatment of fruits should be a priority research issue considering the lack of alternative treatment systems. However, the key point hampering optimization of BPS is the lack of fundamental knowledge on BPS microbiology. The use of advanced molecular and biochemical methods in BPS would shed light into this issue in the future.
Chemosphere | 2010
Evangelos Karanasios; Nikolaos G. Tsiropoulos; Dimitrios G. Karpouzas; Urania Menkissoglu-Spiroudi
The composition of biomixtures strongly affect the efficacy of biobeds. Typically, biomixture consists of peat (or compost), straw (STR) and topsoil (1:2:1 by volume). Straw guarantees a continuous supply of nutrients and high microbial activity. However, in south Europe other lignocellulosic materials including sunflower crop residues (SFR), olive leaves, grape stalks (GS), orange peels, corn cobs (CC) and spent mushroom substrate (SMS) are also readily available at no cost. Their potential utilization in biomixtures instead of STR was tested in pesticide degradation and adsorption studies. The microbial activity in these biomixtures was also assessed. The GS-biomixture was the most efficient in pesticide degradation, while CC- and SFR-biomixtures showed comparable degrading efficacy with the STR-biomixture. The SMS-biomixture was also highly efficient in degrading the pesticide mixture with degradation rates being correlated with the proportion of SMS in the biomixture. Microbial respiration was positively correlated with the degradation rates of metalaxyl, azoxystrobin and chlorpyrifos, compared to phenoloxidase which showed no correlation. Biomixtures containing alternative lignocellulosic materials showed a higher adsorption affinity for terbuthylazine and metribuzin compared to the STR-biomixture. We provide first evidence that STR can be substituted in biomixtures by other lignocellulosic materials which are readily available in south Europe.
Pest Management Science | 2010
Konstantina Kravvariti; Nikolaos G. Tsiropoulos; Dimitrios G. Karpouzas
BACKGROUND Biobeds have been well studied in northern Europe, whereas little is known regarding their use in southern Europe. The degradation and adsorption of terbuthylazine (TA) and chlorpyrifos (CP) were studied in three different biomixtures composed of composted cotton crop residues, soil and straw in various proportions, and also in sterilised and non-sterilised soil. RESULTS Compost biomixtures degraded the less hydrophobic TA at a faster rate than soil, while the opposite was evident for the more hydrophobic CP. These results were attributed to the rapid abiotic hydrolysis of CP in the alkaline soil (pH 8.5) compared with the lower pH of the compost (6.6), but also to the increasing adsorption (K(d) = 746 mL g(-1)) and reduced bioavailability of CP in the biomixtures compared with soil (K(d) = 17 mL g(-1)), as verified by the adsorption studies. CONCLUSIONS Compost had a dual but contrasting effect on degradation that depended on the chemical nature of the pesticide studied: a positive effect towards TA owing to increasing biodegradation and a negative effect towards CP owing to increasing adsorption. Overall, composted cotton crop residues could be potentially used in local biobed systems in Greece, as they promoted the degradation of hydrophilic pesticides and the adsorption of hydrophobic pesticides.
Bioresource Technology | 2011
Eleni Chanika; Dafne Georgiadou; Eftehia Soueref; Panagiotis A. Karas; Evangelos Karanasios; Nikolaos G. Tsiropoulos; Emmanuel A. Tzortzakakis; Dimitrios G. Karpouzas
Two bacteria identified as Pseudomonas putida and Acinetobacter rhizosphaerae able to rapidly degrade the organophosphate (OP) fenamiphos (FEN) were isolated. Denaturating gradient gel electrophoresis analysis revealed that the two isolates were dominant members of the enrichment culture. Clone libraries further showed that bacteria belonging to α-, β-, γ-proteobacteria and Bacteroidetes were also present in the final enrichment but were not isolated. Both strains hydrolyzed FEN to fenamiphos phenol which was further transformed, only by P. putida. The two strains were using FEN as C and N source. Cross-feeding studies with other pesticides showed that P. putida degraded OPs with a P-O-C linkage and unexpectedly degraded the carbamates oxamyl and carbofuran being the first wild-type bacterial strain able to degrade both OPs and carbamates. The same isolate exhibited high bioremediation potential against spillage-level concentrations of aged residues of FEN and its oxidized derivatives.
Journal of Chromatography A | 2009
Elpiniki G. Amvrazi; Nikolaos G. Tsiropoulos
A simple and rapid single-drop microextraction method coupled with gas chromatography and mass spectrometry (SDME-GC/MS) for the determination of 20 pesticides with different physicochemical properties in grapes and apples was optimized by the use of a multivariate strategy. Emphasis on the optimization study was given to the role of ionic strength, sugar concentration and pH of the donor sample solution prepared from the fruit samples. Since all three variables were found to affect negatively SDME (a lower extraction efficiency was observed as the values of variables were increased for most of the pesticides studied), donor sample solution was optimized using a central composite design to evaluate the optimum pH value and the optimum dilution of the sample extract. With some exceptions (chlorpyrifos ethyl, alpha-endosulfan, beta-endosulfan, pyriproxyfen, lambda-cyhalothrin and bifenthrin), the optimum method included the dilution of the analytical sample by 12.5-fold with a buffered acetone/water solution at pH=4 and exhibited good analytical characteristics for the majority of target analytes (pyrimethanil, pirimicarb, metribuzin, vinclozolin, fosthiazate, procymidone, fludioxonil, kresoxim methyl, endosulfan sulfate, fenhexamid, iprodione, phosalone, indoxacarb and azoxystrobin) by providing high enrichment factors (14-328), low limits of detection (0.0003-0.007 microg/g), and good precision (relative standard deviations below 15%).
International Journal of Environmental Analytical Chemistry | 2007
E. E. Golia; Nikolaos G. Tsiropoulos; A. Dimirkou; I. K. Mitsios
The state of heavy metal (Cd, Cu, Ni, Zn, Pb, and Cr) pollution was studied, in 440 texturally different soil profiles in Thessaly, an intensely cultivated region in Central Greece. The study was carried out in 2004 and 2005 on 220 soil samples for each year. Soil samples were classified in three soil orders: Endisols, Alfisols, and Vertisols according to the Soil Taxonomy System. The pseudo-total concentrations of heavy metals were determined by the aqua regia procedure. Heavy metals were also determined after division into four fractions by sequential extraction with (a) acetic acid (exchangeable and specifically adsorbed metals), (b) a reducing agent (bound to Fe/Mn hydroxides), (c) an oxidizing agent (bound to soil organic matter), and (d) aqua regia (bound to mineral structures, residual). The concentrations of all the metals studied were higher in the topsoil (0–30 cm) and lower in the second soil layer (30–60 cm). Concentrations of 70–82% of Cd, 39–64% of Cu, 41–69% of Ni, 29–51% of Zn, 75–89% of Pb, and 52–87% of Cr were found in the first two fractions. Cd appeared to be the most mobile of the metals studied, while Cu and Zn were found in forms associated with soil organic matter. The chemical partitioning patterns of Pb and Cr indicated that these metals are largely associated with the Fe–Mn hydroxides, while Cr was also found in the residual fractions. Significant correlations between heavy metals fractions and soil physicochemical parameters were obtained and discussed.
Chemosphere | 2013
Evangelos Karanasios; Nikolaos G. Tsiropoulos; Dimitrios G. Karpouzas
Biobed substrates commonly exhibit high degradation capacity. However, degradation does not always lead to detoxification and information on the metabolic pathways of pesticides in biobeds is scarce. We studied the degradation and metabolism of three pesticides in selected biomixtures and soil. Biomixtures stimulated degradation of terbuthylazine and metribuzin, whereas chlorpyrifos degraded faster in soil. The latter was attributed to the lipophilicity of chlorpyrifos which increased adsorption and limited biodegradation in organic-rich biomixtures. Although the same metabolites were detected in all substrates, qualitative and quantitative differences in the metabolic routes of pesticides in the various substrates were observed. Chlorpyrifos was hydrolyzed to 3,5,6-tricholorpyridinol (TCP) which was further degraded only in compost-biomixture CBX1. Metabolism of terbuthylazine in compost biomixtures (BX) and soil resulted in the formation of desethyl-terbuthylazine (DES) which was fully degraded only in the compost-biomixture CBX2, whereas peat-based biomixture (OBX) promoted the hydroxylation of terbuthylazine. Desamino- (DA) (dominant) and diketo- (DK) metribuzin appear as intermediate metabolites in all substrates and were further transformed to desamino-diketo-metribuzin (DADK) which was fully degraded only in compost-biomixture GSBX. Overall, lower amounts of metabolites were accumulated in biomixtures compared to soil stressing the higher depuration efficiency of biobeds.
International Journal of Environmental Analytical Chemistry | 2009
Dimitrios T. Likas; Nikolaos G. Tsiropoulos
A new analytical procedure was developed and validated, using liquid chromatography, for simultaneous determination of seven new pesticides belonging to different chemical classes (azoles, strobilurines, benzoylureas, and a new oxazolidinedione) in apple, grape and wine food samples. Solvent extraction of pesticides was performed using a cyclohexane-dichloromethane (9 + 1 v/v) mixture and the extract was cleaned-up by solid-phase extraction (SPE) using silica cartridges and elution with tetrahydrofurane. Separation of pesticides flusilazole, fenbuconazole, diniconazole, tebufenozide, famoxadone, trifloxystrobin and flufenoxuron was performed by gradient elution High-Performance Liquid Chromatography (HPLC) with a microbore Hypersil HS C18 column in 35 min total time, using mixtures of acetonitrile-water as the mobile phase. Pesticides were detected and quantified at 210 nm with a variable-wavelength UV detector. Recoveries of pesticides from spiked samples, at 0.05–2.0 mg kg−1 for apple and grape and at 0.025–0.250 mg L−1 for wine, ranged from 82 to 107% for apple and grape and from 87% to 106% for wine with RSD < 12%. The limits of quantification (LOQs) of the method, as a signal to noise ratio equalled 10, ranged from 0.02 to 0.10 mg kg−1 for apple and grape and from 0.005 to 0.02 mg L−1 for wine samples. The uncertainty associated with the analytical methodology, estimated using the ‘bottom-up’ approach, was lower than 12.8% for all pesticides and matrices tested. The proposed methodology was applied for the evaluation of trifloxystrobin residue levels in grapes exposed to field treatments and in the must and wine produced from them.