Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolaos Georgelis is active.

Publication


Featured researches published by Nikolaos Georgelis.


The Plant Cell | 2007

The Two AGPase Subunits Evolve at Different Rates in Angiosperms, yet They Are Equally Sensitive to Activity-Altering Amino Acid Changes When Expressed in Bacteria

Nikolaos Georgelis; Edward L. Braun; Janine R. Shaw; L. Curtis Hannah

The rate of protein evolution is generally thought to reflect, at least in part, the proportion of amino acids within the protein that are needed for proper function. In the case of ADP-glucose pyrophosphorylase (AGPase), this premise led to the hypothesis that, because the AGPase small subunit is more conserved compared with the large subunit, a higher proportion of the amino acids of the small subunit are required for enzyme activity compared with the large subunit. Evolutionary analysis indicates that the AGPase small subunit has been subject to more intense purifying selection than the large subunit in the angiosperms. However, random mutagenesis and expression of the maize (Zea mays) endosperm AGPase in bacteria show that the two AGPase subunits are equally predisposed to enzyme activity-altering amino acid changes when expressed in one environment with a single complementary subunit. As an alternative hypothesis, we suggest that the small subunit exhibits more evolutionary constraints in planta than does the large subunit because it is less tissue specific and thus must form functional enzyme complexes with different large subunits. Independent approaches provide data consistent with this alternative hypothesis.


The Plant Cell | 2012

A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development

L. Curtis Hannah; Brandon Futch; James W. Bing; Janine R. Shaw; Susan K. Boehlein; Jon D. Stewart; Robert Beiriger; Nikolaos Georgelis; Thomas W. Greene

This work examines the function of a maize heat-stable, less inhibitor–sensitive form of ADP-glucose pyrophosphorylase, which increases maize yield by increasing seed number. This work shows that this increase requires high temperature during early seed development and results from transgene function in maternal tissues to increase the probability that an ovary will produce a seed. The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent of the yield increase is dependent on temperatures during the first 4 d post pollination, and yield is increased if average daily high temperatures exceed 33°C. As found in wheat (Triticum aestivum) and rice (Oryza sativa), this transgene increases maize yield by increasing seed number. This result was surprising, since an entire series of historic observations at the whole-plant, enzyme, gene, and physiological levels pointed to Sh2 playing an important role only in the endosperm. Here, we present several lines of evidence that lead to the conclusion that the Sh2 transgene functions in maternal tissue to increase seed number and, in turn, yield. Furthermore, the transgene does not increase ovary number; rather, it increases the probability that a seed will develop. Surprisingly, the number of fully developed seeds is only ∼50% of the number of ovaries in wild-type maize. This suggests that increasing the frequency of seed development is a feasible agricultural target, especially under conditions of elevated temperatures.


BMC Evolutionary Biology | 2008

Duplications and functional divergence of ADP-glucose pyrophosphorylase genes in plants

Nikolaos Georgelis; Edward L. Braun; L. Curtis Hannah

BackgroundADP-glucose pyrophosphorylase (AGPase), which catalyses a rate limiting step in starch synthesis, is a heterotetramer comprised of two identical large and two identical small subunits in plants. Although the large and small subunits are equally sensitive to activity-altering amino acid changes when expressed in a bacterial system, the overall rate of non-synonymous evolution is ~2.7-fold greater for the large subunit than for the small subunit. Herein, we examine the basis for their different rates of evolution, the number of duplications in both large and small subunit genes and document changes in the patterns of AGPase evolution over time.ResultsWe found that the first duplication in the AGPase large subunit family occurred early in the history of land plants, while the earliest small subunit duplication occurred after the divergence of monocots and eudicots. The large subunit also had a larger number of gene duplications than did the small subunit. The ancient duplications in the large subunit family raise concern about the saturation of synonymous substitutions, but estimates of the absolute rate of AGPase evolution were highly correlated with estimates of ω (the non-synonymous to synonymous rate ratio). Both subunits showed evidence for positive selection and relaxation of purifying selection after duplication, but these phenomena could not explain the different evolutionary rates of the two subunits. Instead, evolutionary constraints appear to be permanently relaxed for the large subunit relative to the small subunit. Both subunits exhibit branch-specific patterns of rate variation among sites.ConclusionThese analyses indicate that the higher evolutionary rate of the plant AGPase large subunit reflects permanent relaxation of constraints relative to the small subunit and they show that the large subunit genes have undergone more gene duplications than small subunit genes. Candidate sites potentially responsible for functional divergence within each of the AGPase subunits were investigated by examining branch-specific patterns of rate variation. We discuss the phenotypes of mutants that alter some candidate sites and strategies for examining candidate sites of presently unknown function.


Plant Physiology | 2009

Phylogenetic Analysis of ADP-Glucose Pyrophosphorylase Subunits Reveals a Role of Subunit Interfaces in the Allosteric Properties of the Enzyme

Nikolaos Georgelis; Janine R. Shaw; L. Curtis Hannah

ADP-glucose pyrophosphorylase (AGPase) catalyzes a rate-limiting step in glycogen and starch synthesis in bacteria and plants, respectively. Plant AGPase consists of two large and two small subunits that were derived by gene duplication. AGPase large subunits have functionally diverged, leading to different kinetic and allosteric properties. Amino acid changes that could account for these differences were identified previously by evolutionary analysis. In this study, these large subunit residues were mapped onto a modeled structure of the maize (Zea mays) endosperm enzyme. Surprisingly, of 29 amino acids identified via evolutionary considerations, 17 were located at subunit interfaces. Fourteen of the 29 amino acids were mutagenized in the maize endosperm large subunit (SHRUNKEN-2 [SH2]), and resulting variants were expressed in Escherichia coli with the maize endosperm small subunit (BT2). Comparisons of the amount of glycogen produced in E. coli, and the kinetic and allosteric properties of the variants with wild-type SH2/BT2, indicate that 11 variants differ from the wild type in enzyme properties or in vivo glycogen level. More interestingly, six of nine residues located at subunit interfaces exhibit altered allosteric properties. These results indicate that the interfaces between the large and small subunits are important for the allosteric properties of AGPase, and changes at these interfaces contribute to AGPase functional specialization. Our results also demonstrate that evolutionary analysis can greatly facilitate enzyme structure-function analyses.


Archive | 2009

Helitrons: Their Impact on Maize Genome Evolution and Diversity

Shailesh K. Lal; Nikolaos Georgelis; Curtis L Hannah

Gene movement by the newly-described Helitron family of transposable elements apparently has significantly impacted the evolution of this genome and has contributed to the lack of intra-specific gene collinearity between different maize inbred lines. The abundance of these elements and the extent of diversity among them remain largely undetermined. Several hypotheses have been proposed to explain their transposition and mechanism by which these elements prolifically capture and mobilize gene sequences, but each lacks supporting experimental evidence. A more complete understanding of this process requires molecular and genetic evidence of Helitron activity in modern maize genome. Establishment of in vivo and in vitro systems to assay transposition activity would also aid our understanding of this new class of transposable elements.


Archives of Biochemistry and Biophysics | 2014

Enhanced heat stability and kinetic parameters of maize endosperm ADPglucose pyrophosphorylase by alteration of phylogenetically identified amino acids

Susan K. Boehlein; Janine R. Shaw; Nikolaos Georgelis; L. Curtis Hannah

ADP-glucose pyrophosphorylase (AGPase) controls the rate-limiting step in starch biosynthesis and is regulated at various levels. Cereal endosperm enzymes, in contrast to other plant AGPases, are particularly heat labile and transgenic studies highlight the importance of temperature for cereal yield. Previously, a phylogenetic approach identified Type II and positively selected amino acid positions in the large subunit of maize endosperm AGPase. Glycogen content, kinetic parameters and heat stability were measured in AGPases having mutations in these sites and interesting differences were observed. This study expands on our earlier evolutionary work by determining how all Type II and positively selected sites affect kinetic constants, heat stability and catalytic rates at increased temperatures. Variants with enhanced properties were identified and combined into one gene, designated Sh2-E. Enhanced properties include: heat stability, enhanced activity at 37 °C, activity at 55 °C, reduced Ka and activity in the absence of activator. The resulting enzyme exhibited all improved properties of the various individual changes. Additionally, Sh2-E was expressed with a small subunit variant with enhanced enzyme properties resulting in an enzyme that has exceptional heat stability, a high catalytic rate at increased temperatures and significantly decreased Km values for both substrates in the absence of the activator.


Plant Molecular Biology | 2008

Helitron mediated amplification of cytochrome P450 monooxygenase gene in maize

Natalie Jameson; Nikolaos Georgelis; Eric Fouladbash; Sara Martens; L. Curtis Hannah; Shailesh K. Lal


Plant Science | 2008

Isolation of a heat-stable maize endosperm ADP-glucose pyrophosphorylase variant

Nikolaos Georgelis; L. Curtis Hannah


Plant Direct | 2017

A brittle-2 transgene increases maize yield by acting in maternal tissues to increase seed number

L. Curtis Hannah; Janine R. Shaw; Maureen A. Clancy; Nikolaos Georgelis; Susan K. Boehlein


Archive | 2009

Heat resistant plants and plant tissues and methods and materials for making and using same

L. Curtis Hannah; Nikolaos Georgelis

Collaboration


Dive into the Nikolaos Georgelis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge