Nikolas L. Jorstad
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nikolas L. Jorstad.
Nature | 2015
Jieqi Wang; Jan Eike Wegener; Teng Wei Huang; Smitha Sripathy; Héctor De Jesús-Cortés; Pin Xu; Stephanie Tran; Whitney Knobbe; Vid Leko; Jeremiah K. Britt; Ruth Starwalt; Latisha McDaniel; Christopher S. Ward; Diana Parra; Benjamin Newcomb; Uyen Lao; Cynthia Nourigat; David Flowers; Sean M. Cullen; Nikolas L. Jorstad; Yue Yang; Lena Glaskova; Sebastian Vigneau; Julia Kozlitina; Michael J. Yetman; Joanna L. Jankowsky; Sybille D. Reichardt; Holger M. Reichardt; Jutta Gärtner; Marisa S. Bartolomei
arising from N. C. Derecki et al. 484, 105–109 (2012); doi:10.1038/nature10907Rett syndrome is a severe neurodevelopmental disorder caused by mutations in the X chromosomal gene MECP2 (ref. 1), and its treatment so far is symptomatic. Mecp2 disruption in mice phenocopies major features of the syndrome that can be reversed after Mecp2 re-expression. Recently, Derecki et al. reported that transplantation of wild-type bone marrow into lethally irradiated Mecp2-null (Mecp2tm1.1Jae/y) mice prevented neurological decline and early death by restoring microglial phagocytic activity against apoptotic targets, and clinical trials of bone marrow transplantation (BMT) for patients with Rett syndrome have thus been initiated. We aimed to replicate and extend the BMT experiments in three different Rett syndrome mouse models, but found that despite robust microglial engraftment, BMT from wild-type donors did not prevent early death or ameliorate neurological deficits. Furthermore, early and specific Mecp2 genetic expression in microglia did not rescue Mecp2-deficient mice.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Yumi Ueki; Matthew S. Wilken; Kristen E. Cox; Laura Chipman; Nikolas L. Jorstad; Kristen Sternhagen; Milesa Simic; Kristy Ullom; Masato Nakafuku; Thomas A. Reh
Significance The retina is subject to a variety of insults that lead to degeneration of one or more types of neurons and ultimate visual impairment and blindness. Although the retinas of nonmammalian vertebrates can regenerate new neurons after injury, mammalian retinas largely lack this potential. We have tested whether the expression of the proneural transcription factor Ascl1 may be a key difference between the fish and mouse by targeting this factor to the cells that provide new retinal progenitors in mature retina, the Müller glia. Our results show that at least one of the differences between mammal and fish Müller glia that bears on their difference in regenerative potential is the proneural transcription factor Ascl1. Müller glial cells are the source of retinal regeneration in fish and birds; although this process is efficient in fish, it is less so in birds and very limited in mammals. It has been proposed that factors necessary for providing neurogenic competence to Müller glia in fish and birds after retinal injury are not expressed in mammals. One such factor, the proneural transcription factor Ascl1, is necessary for retinal regeneration in fish but is not expressed after retinal damage in mice. We previously reported that forced expression of Ascl1 in vitro reprograms Müller glia to a neurogenic state. We now test whether forced expression of Ascl1 in mouse Müller glia in vivo stimulates their capacity for retinal regeneration. We find that transgenic expression of Ascl1 in adult Müller glia in undamaged retina does not overtly affect their phenotype; however, when the retina is damaged, the Ascl1-expressing glia initiate a response that resembles the early stages of retinal regeneration in zebrafish. The reaction to injury is even more pronounced in Müller glia in young mice, where the Ascl1-expressing Müller glia give rise to amacrine and bipolar cells and photoreceptors. DNaseI-seq analysis of the retina and Müller glia shows progressive reduction in accessibility of progenitor gene cis-regulatory regions consistent with the reduction in their reprogramming. These results show that at least one of the differences between mammal and fish Müller glia that bears on their difference in regenerative potential is the proneural transcription factor Ascl1.
Nature | 2017
Nikolas L. Jorstad; Matthew S. Wilken; William N. Grimes; Stefanie G. Wohl; Leah S. VandenBosch; Takeshi Yoshimatsu; Rachel Wong; Fred Rieke; Thomas A. Reh
Many retinal diseases lead to the loss of retinal neurons and cause visual impairment. The adult mammalian retina has little capacity for regeneration. By contrast, teleost fish functionally regenerate their retina following injury, and Müller glia (MG) are the source of regenerated neurons. The proneural transcription factor Ascl1 is upregulated in MG after retinal damage in zebrafish and is necessary for regeneration. Although Ascl1 is not expressed in mammalian MG after injury, forced expression of Ascl1 in mouse MG induces a neurogenic state in vitro and in vivo after NMDA (N-methyl-d-aspartate) damage in young mice. However, by postnatal day 16, mouse MG lose neurogenic capacity, despite Ascl1 overexpression. Loss of neurogenic capacity in mature MG is accompanied by reduced chromatin accessibility, suggesting that epigenetic factors limit regeneration. Here we show that MG-specific overexpression of Ascl1, together with a histone deacetylase inhibitor, enables adult mice to generate neurons from MG after retinal injury. The MG-derived neurons express markers of inner retinal neurons, synapse with host retinal neurons, and respond to light. Using an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC–seq), we show that the histone deacetylase inhibitor promotes accessibility at key gene loci in the MG, and allows more effective reprogramming. Our results thus provide a new approach for the treatment of blinding retinal diseases.
PLOS ONE | 2013
Yue Yang; Christine Shiao; Jake Hemingway; Nikolas L. Jorstad; Bryan Richard Shalloway; Rubens Chang; C. Dirk Keene
Alzheimers disease (AD) is an age-related condition characterized by accumulation of neurotoxic amyloid β peptides (Aβ) in brain and retina. Because bone marrow transplantation (BMT) results in decreased cerebral Aβ in experimental AD, we hypothesized that BMT would mitigate retinal neurotoxicity through decreased retinal Aβ. To test this, we performed BMT in APPswe/PS1ΔE9 double transgenic mice using green fluorescent protein expressing wild type (wt) mice as marrow donors. We first examined retinas from control, non-transplanted, aged AD mice and found a two-fold increase in microglia compared with wt mice, prominent inner retinal Aβ and paired helical filament-tau, and decreased retinal ganglion cell layer neurons. BMT resulted in near complete replacement of host retinal microglia with BMT-derived cells and normalized total AD retinal microglia to non-transplanted wt levels. Aβ and paired helical filament-tau were reduced (61.0% and 44.1% respectively) in BMT-recipient AD mice, which had 20.8% more retinal ganglion cell layer neurons than non-transplanted AD controls. Interestingly, aged wt BMT recipients also had significantly more neurons (25.4%) compared with non-transplanted aged wt controls. Quantitation of retinal ganglion cell layer neurons in young mice confirmed age-related retinal degeneration was mitigated by BMT. We found increased MHC class II expression in BMT-derived microglia and decreased oxidative damage in retinal ganglion cell layer neurons. Thus, BMT is neuroprotective in age-related as well as AD-related retinal degeneration, and may be a result of alterations in innate immune function and oxidative stress in BMT recipient mice.
Journal of Neuroscience Research | 2015
Erica J. Melief; Eiron Cudaback; Nikolas L. Jorstad; Emily Sherfield; Nadia Postupna; Angela M. Wilson; Martin Darvas; Kathleen S. Montine; C. Dirk Keene; Thomas J. Montine
Parkinsons disease and Alzheimers disease (AD) are recognized to coexist on a spectrum of neurodegeneration, and it has been proposed that molecular interactions among pathogenic proteins are a basis for the overlap between these two diseases. We instead hypothesized that degeneration of the nigrostriatal dopaminergic system enhances the clinical penetrance of early‐stage AD. To determine the effect of striatal dopamine (DA) on the pathological effects in an experimental model of AD, APPSWE/PS1ΔE9 mice received striatal injections of the neurotoxin 6‐hydroxydopamine (6OHDA). Animals were tested in a Barnes maze protocol and in a water T‐maze protocol at different ages to determine the onset of cognitive impairment. APPSWE/PS1ΔE9 mice that received 6OHDA injections showed significant impairment in Barnes maze performance at an earlier age than controls. Additionally, at 12 months of age, APPswe/PS1ΔE9 + 6OHDA mice demonstrated worse behavioral flexibility than other groups in a task‐switch phase of the water T‐maze. To determine the neuroprotective effects of dopaminergic neurotransmission against amyloid‐β42 (Aβ42) toxicity, neuronal branch order and dendrite length were quantified in primary medium spiny neuron (MSN) cultures pretreated with increasing doses of the D1 and D2 receptor agonists before being exposed to oligomerized Aβ42. Although there were no differences in Aβ peptide levels or plaque burden among the groups, in murine MSN culture dopaminergic agonists prevented a toxic response to Aβ42. Depletion of DA in the striatum exacerbated the cognitive impairment seen in a mouse model of early‐stage AD; this may be due to a protective effect of dopaminergic innervation against Aβ striatal neurotoxicity.
Experimental and Molecular Pathology | 2013
Yue Yang; Nikolas L. Jorstad; Christine Shiao; Makenzie K. Cherne; Shawn B. Khademi; Kathleen S. Montine; Thomas J. Montine; C. Dirk Keene
Myeloablative (MyA) bone marrow transplantation (BMT) results in robust engraftment of BMT-derived cells in the central nervous system (CNS) and is neuroprotective in diverse experimental models of neurodegenerative diseases of the brain and retina. However, MyA irradiation is associated with significant morbidity and mortality and does not represent a viable therapeutic option for the elderly. Non-myeloablative (NMyA) BMT is less toxic, but it is not known if the therapeutic efficacy observed with MyA BMT is preserved. As a first step to address this important gap in knowledge, we evaluated and compared engraftment characteristics of BMT-derived monocytes/microglia using several clinically relevant NMyA pretransplant conditioning regimens in C57BL/6 mice. These included chemotherapy (fludarabine and cyclophosphamide) with or without 2 Gy irradiation, and 5.5 Gy irradiation alone. Each regimen was followed by transplantation of whole bone marrow from green fluorescent protein-expressing wild type (wt) mice. While stable hematopoietic engraftment occurred, to varying degrees, in all NMyA regimens, only 5.5 Gy irradiation resulted in significant engraftment of BMT-derived cells in the brain, where these cells were exclusively localized to perivascular, leptomeningeal, and related anatomic regions. Engraftment in retina under 5.5 Gy NMyA conditions was significantly reduced compared to MyA, but robust engraftment was identified in the optic nerve. Advancing the therapeutic applications of BMT to neurodegenerative diseases will require identification of the barrier mechanisms that MyA, but not NMyA, BMT is able to overcome.
eLife | 2017
Jeremy A. Miller; Angela L. Guillozet-Bongaarts; Laura E. Gibbons; Nadia Postupna; Anne Renz; Allison Beller; Susan M. Sunkin; Lydia Ng; Shannon E. Rose; Kimberly A. Smith; Aaron Szafer; Chris Barber; Darren Bertagnolli; Kristopher Bickley; Krissy Brouner; Shiella Caldejon; Mike Chapin; Mindy L Chua; Natalie M Coleman; Eiron Cudaback; Christine Cuhaciyan; Rachel A. Dalley; Nick Dee; Tsega Desta; Tim Dolbeare; Nadezhda Dotson; Michael Fisher; Nathalie Gaudreault; Garrett Gee; Terri L. Gilbert
As more people live longer, age-related neurodegenerative diseases are an increasingly important societal health issue. Treatments targeting specific pathologies such as amyloid beta in Alzheimer’s disease (AD) have not led to effective treatments, and there is increasing evidence of a disconnect between traditional pathology and cognitive abilities with advancing age, indicative of individual variation in resilience to pathology. Here, we generated a comprehensive neuropathological, molecular, and transcriptomic characterization of hippocampus and two regions cortex in 107 aged donors (median = 90) from the Adult Changes in Thought (ACT) study as a freely-available resource (http://aging.brain-map.org/). We confirm established associations between AD pathology and dementia, albeit with increased, presumably aging-related variability, and identify sets of co-expressed genes correlated with pathological tau and inflammation markers. Finally, we demonstrate a relationship between dementia and RNA quality, and find common gene signatures, highlighting the importance of properly controlling for RNA quality when studying dementia.
Nature Communications | 2017
Stefanie G. Wohl; Nikolas L. Jorstad; Edward M. Levine; Thomas A. Reh
To better understand the roles of microRNAs in glial function, we used a conditional deletion of Dicer1 (Dicer-CKOMG) in retinal Müller glia (MG). Dicer1 deletion from the MG leads to an abnormal migration of the cells as early as 1 month after the deletion. By 6 months after Dicer1 deletion, the MG form large aggregations and severely disrupt normal retinal architecture and function. The most highly upregulated gene in the Dicer-CKOMG MG is the proteoglycan Brevican (Bcan) and overexpression of Bcan results in similar aggregations of the MG in wild-type retina. One potential microRNA that regulates Bcan is miR-9, and overexpression of miR-9 can partly rescue the effects of Dicer1 deletion on the MG phenotype. We also find that MG from retinitis pigmentosa patients display an increase in Brevican immunoreactivity at sites of MG aggregation, linking the retinal remodeling that occurs in chronic disease with microRNAs.Müller glia are a type of retinal glial cell important for maintaining retinal structure and implicated in response to retinal damage. Here the authors identify Brevican, a chondroitin sulfate proteoglycan, as a microRNA-modulated regulator of Müller glia function.
Nature | 2015
Jieqi Wang; Jan Eike Wegener; Teng-Wei Huang; Smitha Sripathy; Héctor De Jesús-Cortés; Pin Xu; Stephanie Tran; Whitney Knobbe; Vid Leko; Jeremiah K. Britt; Ruth Starwalt; Latisha McDaniel; Christopher S. Ward; Diana Parra; Benjamin Newcomb; Uyen Lao; Cynthia Nourigat; David Flowers; Sean M. Cullen; Nikolas L. Jorstad; Yue Yang; Lena Glaskova; Julia Kozlitina; Michael J. Yetman; Joanna L. Jankowsky; Sybille D. Reichardt; Holger M. Reichardt; Jutta Gärtner; Marisa S. Bartolomei; Min Fang
This corrects the article DOI: 10.1038/nature14444
Nature | 2015
Jieqi Wang; Jan Eike Wegener; Teng Wei Huang; Smitha Sripathy; Héctor De Jesús-Cortés; Pin Xu; Stephanie Tran; Whitney Knobbe; Vid Leko; Jeremiah K. Britt; Ruth Starwalt; Latisha McDaniel; Christopher S. Ward; Diana Parra; Benjamin Newcomb; Uyen Lao; Cynthia Nourigat; David Flowers; Sean M. Cullen; Nikolas L. Jorstad; Yue Yang; Lena Glaskova; Julia Kozlitina; Michael J. Yetman; Joanna L. Jankowsky; Sybille D. Reichardt; Holger M. Reichardt; Jutta Gärtner; Marisa S. Bartolomei; Min Fang
This corrects the article DOI: 10.1038/nature14444