Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolaus Augsten is active.

Publication


Featured researches published by Nikolaus Augsten.


very large data bases | 2011

RTED: a robust algorithm for the tree edit distance

Mateusz Pawlik; Nikolaus Augsten

We consider the classical tree edit distance between ordered labeled trees, which is defined as the minimum-cost sequence of node edit operations that transform one tree into another. The state-of-the-art solutions for the tree edit distance are not satisfactory. The main competitors in the field either have optimal worst-case complexity, but the worst case happens frequently, or they are very efficient for some tree shapes, but degenerate for others. This leads to unpredictable and often infeasible runtimes. There is no obvious way to choose between the algorithms. In this paper we present RTED, a robust tree edit distance algorithm. The asymptotic complexity of RTED is smaller or equal to the complexity of the best competitors for any input instance, i.e., RTED is both efficient and worst-case optimal. We introduce the class of LRH (Left-Right-Heavy) algorithms, which includes RTED and the fastest tree edit distance algorithms presented in literature. We prove that RTED outperforms all previously proposed LRH algorithms in terms of runtime complexity. In our experiments on synthetic and real world data we empirically evaluate our solution and compare it to the state-of-the-art.


international conference on data engineering | 2012

Load Balancing in MapReduce Based on Scalable Cardinality Estimates

Benjamin Gufler; Nikolaus Augsten; Angelika Reiser; Alfons Kemper

MapReduce has emerged as a popular tool for distributed and scalable processing of massive data sets and is being used increasingly in e-science applications. Unfortunately, the performance of MapReduce systems strongly depends on an even data distribution while scientific data sets are often highly skewed. The resulting load imbalance, which raises the processing time, is even amplified by high runtime complexity of the reducer tasks. An adaptive load balancing strategy is required for appropriate skew handling. In this paper, we address the problem of estimating the cost of the tasks that are distributed to the reducers based on a given cost model. An accurate cost estimation is the basis for adaptive load balancing algorithms and requires to gather statistics from the mappers. This is challenging: (a) Since the statistics from all mappers must be integrated, the mapper statistics must be small. (b) Although each mapper sees only a small fraction of the data, the integrated statistics must capture the global data distribution. (c) The mappers terminate after sending the statistics to the controller, and no second round is possible. Our solution to these challenges consists of two components. First, a monitoring component executed on every mapper captures the local data distribution and identifies its most relevant subset for cost estimation. Second, an integration component aggregates these subsets approximating the global data distribution.


ACM Transactions on Database Systems | 2010

The pq -gram distance between ordered labeled trees

Nikolaus Augsten; Michael H. Böhlen; Johann Gamper

When integrating data from autonomous sources, exact matches of data items that represent the same real-world object often fail due to a lack of common keys. Yet in many cases structural information is available and can be used to match such data. Typically the matching must be approximate since the representations in the sources differ. We propose pq-grams to approximately match hierarchical data from autonomous sources and define the pq-gram distance between ordered labeled trees as an effective and efficient approximation of the fanout weighted tree edit distance. We prove that the pq-gram distance is a lower bound of the fanout weighted tree edit distance and give a normalization of the pq-gram distance for which the triangle inequality holds. Experiments on synthetic and real-world data (residential addresses and XML) confirm the scalability of our approach and show the effectiveness of pq-grams.


international conference on data engineering | 2008

Approximate Joins for Data-Centric XML

Nikolaus Augsten; Michael H. Böhlen; Curtis E. Dyreson; Johann Gamper

In data integration applications, a join matches elements that are common to two data sources. Often, however, elements are represented slightly different in each source, so an approximate join must be used. For XML data, most approximate join strategies are based on some ordered tree matching technique. But in data-centric XML the order is irrelevant: two elements should match even if their subelement order varies. In this paper we give a solution for the approximate join of unordered trees. Our solution is based on windowed pq-grams. We develop an efficient technique to systematically generate windowed pq-grams in a three-step process: sorting the unordered tree, extending the sorted tree with dummy nodes, and computing the windowed pq-grams on the extended tree. The windowed pq-gram distance between two sorted trees approximates the tree edit distance between the respective unordered trees. The approximate join algorithm based on windowed pq-grams is implemented as an equality join on strings which avoids the costly computation of the distance between every pair of input trees. Our experiments with synthetic and real world data confirm the analytic results and suggest that our technique is both useful and scalable.


international conference on data engineering | 2010

TASM: Top-k Approximate Subtree Matching

Nikolaus Augsten; Denilson Barbosa; Michael H. Böhlen; Themis Palpanas

We consider the Top-k Approximate Subtree Matching (TASM) problem: finding the k best matches of a small query tree, e.g., a DBLP article with 15 nodes, in a large document tree, e.g., DBLP with 26M nodes, using the canonical tree edit distance as a similarity measure between subtrees. Evaluating the tree edit distance for large XML trees is difficult: the best known algorithms have cubic runtime and quadratic space complexity, and, thus, do not scale. Our solution is TASM-postorder, a memory-efficient and scalable TASM algorithm. We prove an upper-bound for the maximum subtree size for which the tree edit distance needs to be evaluated. The upper bound depends on the query and is independent of the document size and structure. A core problem is to efficiently prune subtrees that are above this size threshold. We develop an algorithm based on the prefix ring buffer that allows us to prune all subtrees above the threshold in a single postorder scan of the document. The size of the prefix ring buffer is linear in the threshold. As a result, the space complexity of TASM-postorder depends only on k and the query size, and the runtime of TASM-postorder is linear in the size of the document. Our experimental evaluation on large synthetic and real XML documents confirms our analytic results.


electronic government | 2003

The Role of Web Services in Digital Government

Johann Gamper; Nikolaus Augsten

Since a few years digital government is becoming an active research area with lots of promises to revolutionise government and its interaction with citizens and businesses. A crucial point for the success of e-government is the integration and sharing of services and information provided by different authorities. We argue that Web services are a promising technology to solve this problem.


very large data bases | 2016

An empirical evaluation of set similarity join techniques

Willi Mann; Nikolaus Augsten; Panagiotis Bouros

Set similarity joins compute all pairs of similar sets from two collections of sets. We conduct extensive experiments on seven state-of-the-art algorithms for set similarity joins. These algorithms adopt a filter-verification approach. Our analysis shows that verification has not received enough attention in previous works. In practice, efficient verification inspects only a small, constant number of set elements and is faster than some of the more sophisticated filter techniques. Although we can identify three winners, we find that most algorithms show very similar performance. The key technique is the prefix filter, and AllPairs, the first algorithm adopting this techniques is still a relevant competitor. We repeat experiments from previous work and discuss diverging results. All our claims are supported by a detailed analysis of the factors that determine the overall runtime.


Information Systems | 2016

Tree edit distance

Mateusz Pawlik; Nikolaus Augsten

Hierarchical data are often modelled as trees. An interesting query identifies pairs of similar trees. The standard approach to tree similarity is the tree edit distance, which has successfully been applied in a wide range of applications. In terms of runtime, the state-of-the-art algorithm for the tree edit distance is RTED, which is guaranteed to be fast independent of the tree shape. Unfortunately, this algorithm requires up to twice the memory of its competitors. The memory is quadratic in the tree size and is a bottleneck for the tree edit distance computation.In this paper we present a new, memory efficient algorithm for the tree edit distance, AP-TED (All Path Tree Edit Distance). Our algorithm runs at least as fast as RTED without trading in memory efficiency. This is achieved by releasing memory early during the first step of the algorithm, which computes a decomposition strategy for the actual distance computation. We show the correctness of our approach and prove an upper bound for the memory usage. The strategy computed by AP-TED is optimal in the class of all-path strategies, which subsumes the class of LRH strategies used in RTED. We further present the AP-TED+ algorithm, which requires less computational effort for very small subtrees and improves the runtime of the distance computation. Our experimental evaluation confirms the low memory requirements and the runtime efficiency of our approach. HighlightsWe address the memory problem of the strategy computation in the RTED algorithm for the tree edit distance.We prove an upper bound which guarantees that the strategy computation never uses more memory than the distance computation.We compute the optimal strategy in the class of all-path strategies which subsumes the LRH strategies used before.We develop new single-path functions which are better in terms of runtime and memory than the previously used functions.


ACM Transactions on Database Systems | 2015

Efficient Computation of the Tree Edit Distance

Mateusz Pawlik; Nikolaus Augsten

We consider the classical tree edit distance between ordered labelled trees, which is defined as the minimum-cost sequence of node edit operations that transform one tree into another. The state-of-the-art solutions for the tree edit distance are not satisfactory. The main competitors in the field either have optimal worst-case complexity but the worst case happens frequently, or they are very efficient for some tree shapes but degenerate for others. This leads to unpredictable and often infeasible runtimes. There is no obvious way to choose between the algorithms. In this article we present RTED, a robust tree edit distance algorithm. The asymptotic complexity of our algorithm is smaller than or equal to the complexity of the best competitors for any input instance, that is, our algorithm is both efficient and worst-case optimal. This is achieved by computing a dynamic decomposition strategy that depends on the input trees. RTED is shown optimal among all algorithms that use LRH (left-right-heavy) strategies, which include RTED and the fastest tree edit distance algorithms presented in literature. In our experiments on synthetic and real-world data we empirically evaluate our solution and compare it to the state-of-the-art.


international conference on data engineering | 2011

Efficient Top-k Approximate Subtree Matching in Small Memory

Nikolaus Augsten; Denilson Barbosa; Michael M. Böhlen; Themis Palpanas

We consider the Top-k Approximate Subtree Matching (TASM) problem: finding the k best matches of a small query tree within a large document tree using the canonical tree edit distance as a similarity measure between subtrees. Evaluating the tree edit distance for large XML trees is difficult: the best known algorithms have cubic runtime and quadratic space complexity, and, thus, do not scale. Our solution is TASM-postorder, a memory-efficient and scalable TASM algorithm. We prove an upper bound for the maximum subtree size for which the tree edit distance needs to be evaluated. The upper bound depends on the query and is independent of the document size and structure. A core problem is to efficiently prune subtrees that are above this size threshold. We develop an algorithm based on the prefix ring buffer that allows us to prune all subtrees above the threshold in a single postorder scan of the document. The size of the prefix ring buffer is linear in the threshold. As a result, the space complexity of TASM-postorder depends only on k and the query size, and the runtime of TASM-postorder is linear in the size of the document. Our experimental evaluation on large synthetic and real XML documents confirms our analytic results.

Collaboration


Dive into the Nikolaus Augsten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johann Gamper

Free University of Bozen-Bolzano

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michail Kazimianec

Free University of Bozen-Bolzano

View shared research outputs
Top Co-Authors

Avatar

Willi Mann

University of Salzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Themis Palpanas

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge