Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolaus Blin is active.

Publication


Featured researches published by Nikolaus Blin.


Nature Immunology | 2001

Dermcidin: A novel human antibiotic peptide secreted by sweat glands

Birgit Schittek; Rainer Hipfel; Birgit Sauer; Jürgen Bauer; Hubert Kalbacher; Stefan Stevanovic; Markus Schirle; Kristina Schroeder; Nikolaus Blin; Friedegund Meier; Gernot Rassner; Claus Garbe

Antimicrobial peptides are an important component of the innate response in many species. Here we describe the isolation of the gene Dermcidin, which encodes an antimicrobial peptide that has a broad spectrum of activity and no homology to other known antimicrobial peptides. This protein was specifically and constitutively expressed in the sweat glands, secreted into the sweat and transported to the epidermal surface. In sweat, a proteolytically processed 47–amino acid peptide was generated that showed antimicrobial activity in response to a variety of pathogenic microorganisms. The activity of the peptide was maintained over a broad pH range and in high salt concentrations that resembled the conditions in human sweat. This indicated that sweat plays a role in the regulation of human skin flora through the presence of an antimicrobial peptide. This peptide may help limit infection by potential pathogens in the first few hours following bacterial colonization.


American Journal of Human Genetics | 2005

GJB2 Mutations and Degree of Hearing Loss: A Multicenter Study

Rikkert L. Snoeckx; P.L.M. Huygen; Delphine Feldmann; Sandrine Marlin; Françoise Denoyelle; Jaroslaw Waligora; Malgorzata Mueller-Malesinska; Agneszka Pollak; Rafał Płoski; Alessandra Murgia; Eva Orzan; Pierangela Castorina; Umberto Ambrosetti; Ewa Nowakowska-Szyrwinska; Jerzy Bal; Wojciech Wiszniewski; Andreas R. Janecke; Doris Nekahm-Heis; Pavel Seeman; O. Bendová; Margaret A. Kenna; Anna Frangulov; Heidi L. Rehm; Mustafa Tekin; Armagan Incesulu; Hans Henrik M Dahl; Desirée du Sart; Lucy Jenkins; Deirdre Lucas; Maria Bitner-Glindzicz

Hearing impairment (HI) affects 1 in 650 newborns, which makes it the most common congenital sensory impairment. Despite extraordinary genetic heterogeneity, mutations in one gene, GJB2, which encodes the connexin 26 protein and is involved in inner ear homeostasis, are found in up to 50% of patients with autosomal recessive nonsyndromic hearing loss. Because of the high frequency of GJB2 mutations, mutation analysis of this gene is widely available as a diagnostic test. In this study, we assessed the association between genotype and degree of hearing loss in persons with HI and biallelic GJB2 mutations. We performed cross-sectional analyses of GJB2 genotype and audiometric data from 1,531 persons, from 16 different countries, with autosomal recessive, mild-to-profound nonsyndromic HI. The median age of all participants was 8 years; 90% of persons were within the age range of 0-26 years. Of the 83 different mutations identified, 47 were classified as nontruncating, and 36 as truncating. A total of 153 different genotypes were found, of which 56 were homozygous truncating (T/T), 30 were homozygous nontruncating (NT/NT), and 67 were compound heterozygous truncating/nontruncating (T/NT). The degree of HI associated with biallelic truncating mutations was significantly more severe than the HI associated with biallelic nontruncating mutations (P<.0001). The HI of 48 different genotypes was less severe than that of 35delG homozygotes. Several common mutations (M34T, V37I, and L90P) were associated with mild-to-moderate HI (median 25-40 dB). Two genotypes--35delG/R143W (median 105 dB) and 35delG/dela(GJB6-D13S1830) (median 108 dB)--had significantly more-severe HI than that of 35delG homozygotes.


Human Genetics | 1998

The SOx10/Sox10 gene from human and mouse : sequence, expression, and transactivation by the encoded hmg domain transcription factor

Carsten M. Pusch; Elisabeth Hustert; Dietmar Pfeifer; Peter Südbeck; Ralf Kist; Bruce A. Roe; Zhili Wang; Rudi Balling; Nikolaus Blin; Gerd Scherer

Abstract The SOX genes form a gene family related by homology to the high-mobility group (HMG) box region of the testis-determining gene SRY. We have cloned and sequenced the SOX10 and Sox10 genes from human and mouse, respectively. Both genes encode proteins of 466 amino acids with 98% sequence identity. Significant expression of the 2.9-kb human SOX10 mRNA is observed in fetal brain and in adult brain, heart, small intestine and colon. Strong expression of Sox10 occurs throughout the peripheral nervous system during mouse embryonic development. SOX10 shows an overall amino acid sequence identity of 59% to SOX9. Like SOX9, SOX10 has a potent transcription activation domain at its C-terminus and is therefore likely to function as a transcription factor. Whereas SOX9 maps to 17q, a SOX10 cosmid has previously been mapped by us to the region 22q13.1. Mutations in SOX10 have recently been identified as one cause of Waardenburg-Hirschsprung disease in humans, while a Sox10 mutation underlies the mouse mutant Dom, a murine Hirschsprung model.


American Journal of Human Genetics | 2004

Nonmuscle Myosin Heavy-Chain Gene MYH14 Is Expressed in Cochlea and Mutated in Patients Affected by Autosomal Dominant Hearing Impairment (DFNA4)

Francesca Donaudy; Rik Snoeckx; Markus Pfister; Hans Peter Zenner; Nikolaus Blin; Mariateresa Di Stazio; Antonella Ferrara; Carmen Lanzara; Romina Ficarella; Frank Declau; Carsten M. Pusch; Peter Nürnberg; Salvatore Melchionda; Leopoldo Zelante; Ester Ballana; Xavier Estivill; Guy Van Camp; Paolo Gasparini; Anna Savoia

Myosins have been implicated in various motile processes, including organelle translocation, ion-channel gating, and cytoskeleton reorganization. Different members of the myosin superfamily are responsible for syndromic and nonsyndromic hearing impairment in both humans and mice. MYH14 encodes one of the heavy chains of the class II nonmuscle myosins, and it is localized within the autosomal dominant hearing impairment (DFNA4) critical region. After demonstrating that MYH14 is highly expressed in mouse cochlea, we performed a mutational screening in a large series of 300 hearing-impaired patients from Italy, Spain, and Belgium and in a German kindred linked to DFNA4. This study allowed us to identify a nonsense and two missense mutations in large pedigrees, linked to DFNA4, as well as a de novo allele in a sporadic case. Absence of these mutations in healthy individuals was tested in 200 control individuals. These findings clearly demonstrate the role of MYH14 in causing autosomal dominant hearing loss and further confirm the crucial role of the myosin superfamily in auditive functions.


Laboratory Investigation | 2002

Loss of heterozygosity and promoter methylation, but not mutation, may underlie loss of TFF1 in gastric carcinoma.

Ralph Carvalho; Tuncay Kayademir; Paula Soares; Paulo Canedo; Sónia Sousa; Carla Oliveira; Peter Leistenschneider; Raquel Seruca; Peter Gött; Nikolaus Blin; Fátima Carneiro; José Carlos Machado

It has been advanced that the trefoil factor (TFF) 1 gene is a candidate tumor-suppressor gene and may be involved in the development and/or progression of human gastric cancer. We aimed to clarify the putative role of TFF1 in gastric carcinogenesis. Ninety gastric carcinomas and eight gastric carcinoma-derived cell lines were screened for TFF1 mutations; subsets of the primary tumors and of the cell lines were subjected to loss of heterozygosity (LOH), immunohistochemistry, and promoter methylation analyses. TFF1 mutations were not detected in any of 90 gastric carcinomas. Eight (28%) of 28 informative cases displayed LOH at the TFF1 locus and absence of TFF1 staining by immunohistochemistry. These results indicate a frequent loss of TFF1 expression in gastric carcinomas through a mutation-independent mechanism. Extensive TFF1 promoter methylation was observed in nonexpressing gastric carcinoma-derived cell lines and tissues. Expressing cell lines, as well as normal gastric mucosa, presented little or no methylation of the promoter. Gastric carcinoma DNA presented de novo methylation of the promoter. These results point to the involvement of promoter methylation in the shutting down of TFF1. We conclude that TFF1 point mutations seem to be a rare event in gastric carcinogenesis. The loss of expression of TFF1 in a proportion of gastric carcinomas may be explained by LOH and methylation of the TFF1 promoter region. Our results further support the role of TFF1 inactivation in gastric carcinogenesis, in agreement with the results obtained in the Tff1-knockout mice model.


Human Genetics | 1986

Polysomy of chromosome 7 is correlated with overexpression of the erbB oncogene in human glioblastoma cell lines

Wolfram Henn; Nikolaus Blin; K.D. Zang

SummaryChromosome analysis in a series of human glioblastoma cell lines (HeRo, HeRo-SV1, A172, T406, T508, T705) has indicated characteristic changes in the karyotype, the most striking and consistent of which is a significant increase in the copy number of chromosome 7, with up to 8 copies per metaphase. As determined by Spurr et al., chromosome 7 represents the genomic locus for the oncogene erbB (7pter-q22). Therefore, we have compared the number of chromosomes 7 to the levels of expression of the erbB oncogene. Interestingly, in all of them erbB-specific mRNA was found to be increased at levels even higher than expected from the number of chromosomes 7 found. In contrast, in an astrocytoma of slightly lower grade of malignancy (cell line T567), neither polysomy 7 nor significant expression of the erbB oncogene was noted.


The Journal of Neuroscience | 2007

Thyroid Hormone Deficiency Affects Postnatal Spiking Activity and Expression of Ca2+ and K+ Channels in Rodent Inner Hair Cells

Niels Brandt; Stephanie Kuhn; Stefan Münkner; Claudia Braig; Harald Winter; Nikolaus Blin; Reinhard Vonthein; Marlies Knipper; Jutta Engel

Thyroid hormone (TH) is essential for the development of hearing. Lack of TH in a critical developmental period from embryonic day 17 to postnatal day 12 (P12) in rats and mice leads to morphological and functional deficits in the organ of Corti and the auditory pathway. We investigated the effects of TH on inner hair cells (IHCs) using patch-clamp recordings, capacitance measurements, and immunocytochemistry in hypothyroid rats and athyroid Pax8−/− mice. Spontaneous and evoked Ca2+ action potentials (APs) were present in control IHCs from P3–P11 rats and vanished in parallel with the expression of a rapidly activating Ca2+- and voltage-activated K+ (BK) conductance. IHCs of hypothyroid rats and athyroid Pax8−/− mice displayed APs until the end of the third postnatal week because of threefold elevated Ca2+ currents and missing expression of BK currents. After the fourth postnatal week, some IHCs showed BK currents whereas adjacent IHCs did not, demonstrated by electrophysiology and immunocytochemistry. To test whether the prolonged spiking activity during TH deficiency may be transmitted at IHC synapses, capacitance measurements were performed in parallel to analysis of otoferlin expression, a protein thought to play an essential role in exocytosis of IHCs. Strikingly, otoferlin was absent from IHCs of hypothyroid rats but not of Pax8−/− mice, although both cell types showed exocytosis with an efficiency typical for immature IHCs. These results demonstrate for the first time a TH-dependent control of IHC spiking activity before the onset of hearing attributable to effects of TH on Ca2+ and BK channels. Moreover, they question an indispensable role of otoferlin for exocytosis in IHCs.


Neuroscience | 2006

Two classes of outer hair cells along the tonotopic axis of the cochlea

Jutta Engel; Claudia Braig; Lukas Rüttiger; Stephanie Kuhn; Ulrike Zimmermann; Nikolaus Blin; Matthias Sausbier; Hubert Kalbacher; Stefan Münkner; Karin Rohbock; Peter Ruth; Harald Winter; Marlies Knipper

The molecular basis of high versus low frequency hearing loss and the differences in the sensitivity of outer hair cells depending on their cochlear localization are currently not understood. Here we demonstrate the existence of two different outer hair cell phenotypes along the cochlear axis. Outer hair cells in low frequency regions exhibit early sensitivity for loss of Ca(v)1.3 (alpha1 subunit 1.3 forming the class D L-type voltage-gated Ca(2+) channel), while high frequency regions display a progressive susceptibility for loss of the Ca(2+)-activated large conductance K(+) (BK) channel. Despite deafness, young Ca(v)1.3-deficient mice displayed distortion-product otoacoustic emissions (DPOAEs), indicating functional outer hair cells in the higher frequency range of the cochlea. Considering that DPOAEs are also found in the human deafness syndrome DFNB9 caused by mutations in the synaptic vesicle protein otoferlin, we tested the expression of otoferlin in outer hair cells. Surprisingly, otoferlin showed a distinct tonotopic expression pattern at both the mRNA and protein level. Otoferlin-expressing, Ca(v)1.3 deletion-sensitive outer hair cells in the low frequency range could be clearly separated from otoferlin-negative, BK deletion-sensitive outer hair cells in the high frequency range. In addition, BK deletion led to a higher noise vulnerability in low frequency regions, which are normally unaffected by the BK deletion alone, suggesting that BK currents are involved in survival mechanisms of outer hair cells under noise conditions. Our findings propose new mechanisms and candidate genes for explaining high and low frequency hearing loss.


Human Genetics | 2002

Mutations in the WFS1 gene that cause low-frequency sensorineural hearing loss are small non-inactivating mutations

Kim Cryns; Markus Pfister; R.J.E. Pennings; Steven J. H. Bom; Kris Flothmann; Goele Caethoven; Hannie Kremer; Isabelle Schatteman; Karen A. Köln; Tímea Tóth; Susan Kupka; Nikolaus Blin; Peter Nürnberg; Holger Thiele; Paul H. De Heyning; William Reardon; Dafydd Stephens; C.W.R.J. Cremers; Richard J.H. Smith; Guy Van Camp

Abstract. Hereditary hearing impairment is an extremely heterogeneous trait, with more than 70 identified loci. Only two of these loci are associated with an auditory phenotype that predominantly affects the low frequencies (DFNA1 and DFNA6/14). In this study, we have completed mutation screening of the WFS1 gene in eight autosomal dominant families and twelve sporadic cases in which affected persons have low-frequency sensorineural hearing impairment (LFSNHI). Mutations in this gene are known to be responsible for Wolfram syndrome or DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness), which is an autosomal recessive trait. We have identified seven missense mutations and a single amino acid deletion affecting conserved amino acids in six families and one sporadic case, indicating that mutations in WFS1 are a major cause of inherited but not sporadic low-frequency hearing impairment. Among the ten WFS1 mutations reported in LFSNHI, none is expected to lead to premature protein truncation, and nine cluster in the C-terminal protein domain. In contrast, 64% of the Wolfram syndrome mutations are inactivating. Our results indicate that only non-inactivating mutations in WFS1 are responsible for non-syndromic low-frequency hearing impairment.


Human Molecular Genetics | 2009

Otoferlin interacts with myosin VI: implications for maintenance of the basolateral synaptic structure of the inner hair cell

Paulina Heidrych; Ulrike Zimmermann; Stephanie Kuhn; Christoph Franz; Jutta Engel; Susanne V. Duncker; Bernhard Hirt; Carsten M. Pusch; Peter Ruth; Markus Pfister; Walter Marcotti; Nikolaus Blin; Marlies Knipper

Otoferlin has been proposed to be the Ca(2+) sensor in hair cell exocytosis, compensating for the classical synaptic fusion proteins synaptotagmin-1 and synaptotagmin-2. In the present study, yeast two-hybrid assays reveal myosin VI as a novel otoferlin binding partner. Co-immunoprecipitation assay and co-expression suggest an interaction of both proteins within the basolateral part of inner hair cells (IHCs). Comparison of otoferlin mutants and myosin VI mutant mice indicates non-complementary and complementary roles of myosin VI and otoferlin for synaptic maturation: (i) IHCs from otoferlin mutant mice exhibited a decoupling of CtBP2/RIBEYE and Ca(V)1.3 and severe reduction of exocytosis. (ii) Myosin VI mutant IHCs failed to transport BK channels to the membrane of the apical cell regions, and the exocytotic Ca(2+) efficiency did not mature. (iii) Otoferlin and myosin VI mutant IHCs showed a reduced basolateral synaptic surface area and altered active zone topography. Membrane infoldings in otoferlin mutant IHCs indicated disturbed transport of endocytotic membranes and link the above morphological changes to a complementary role of otoferlin and myosin VI in transport of intracellular compartments to the basolateral IHC membrane.

Collaboration


Dive into the Nikolaus Blin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Kupka

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria M. Sasiadek

Wrocław Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Gött

University of Tübingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge