Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolaus Gassler is active.

Publication


Featured researches published by Nikolaus Gassler.


Journal of Clinical Investigation | 2005

The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis

Armin Schneider; Carola Krüger; Tobias Steigleder; Daniela Weber; Claudia Pitzer; Rico Laage; Jaroslaw Aronowski; Martin H. Maurer; Nikolaus Gassler; Walter Mier; Martin Hasselblatt; Rainer Kollmar; Stefan Schwab; Clemens Sommer; Alfred Bach; Hans Georg Kuhn; Wolf Rüdiger Schäbitz

G-CSF is a potent hematopoietic factor that enhances survival and drives differentiation of myeloid lineage cells, resulting in the generation of neutrophilic granulocytes. Here, we show that G-CSF passes the intact blood-brain barrier and reduces infarct volume in 2 different rat models of acute stroke. G-CSF displays strong anti-apoptotic activity in mature neurons and activates multiple cell survival pathways. Both G-CSF and its receptor are widely expressed by neurons in the CNS, and their expression is induced by ischemia, which suggests an autocrine protective signaling mechanism. Surprisingly, the G-CSF receptor was also expressed by adult neural stem cells, and G-CSF induced neuronal differentiation in vitro. G-CSF markedly improved long-term behavioral outcome after cortical ischemia, while stimulating neural progenitor response in vivo, providing a link to functional recovery. Thus, G-CSF is an endogenous ligand in the CNS that has a dual activity beneficial both in counteracting acute neuronal degeneration and contributing to long-term plasticity after cerebral ischemia. We therefore propose G-CSF as a potential new drug for stroke and neurodegenerative diseases.


Hepatology | 2009

Hepatic Recruitment of the Inflammatory Gr1+ Monocyte Subset Upon Liver Injury Promotes Hepatic Fibrosis

Karlin Raja Karlmark; Ralf Weiskirchen; Henning W. Zimmermann; Nikolaus Gassler; Florent Ginhoux; Christian Weber; Miriam Merad; Tom Luedde; Christian Trautwein; Frank Tacke

In addition to liver‐resident Kupffer cells, infiltrating immune cells have recently been linked to the development of liver fibrosis. Blood monocytes are circulating precursors of tissue macrophages and can be divided into two functionally distinct subpopulations in mice: Gr1hi (Ly6Chi) and Gr1lo (Ly6Clo) monocytes. The role of these monocyte subsets in hepatic fibrosis and the mechanisms of their differential recruitment into the injured liver are unknown. We therefore characterized subpopulations of infiltrating monocytes in acute and chronic carbon tetrachloride (CCl4)‐induced liver injury in mice using flow cytometry and immunohistochemistry. Inflammatory Gr1hi but not Gr1lo monocytes are massively recruited into the liver upon toxic injury constituting an up to 10‐fold increase in CD11b+F4/80+ intrahepatic macrophages. Comparing wild‐type with C‐C chemokine receptor (CCR2)‐deficient and CCR2/CCR6–deficient mice revealed that CCR2 critically controls intrahepatic Gr1hi monocyte accumulation by mediating their egress from bone marrow. During chronic liver damage, intrahepatic CD11b+F4/80+Gr1+ monocyte‐derived cells differentiate preferentially into inducible nitric oxide synthase–producing macrophages exerting proinflammatory and profibrogenic actions, such as promoting hepatic stellate cell (HSC) activation, T helper 1–T cell differentiation and transforming growth factor β (TGF‐β) release. Impaired monocyte subset recruitment in Ccr2−/− and Ccr2−/−Ccr6−/− mice results in reduced HSC activation and diminished liver fibrosis. Moreover, adoptively transferred Gr1hi monocytes traffic into the injured liver and promote fibrosis progression in wild‐type and Ccr2−/−Ccr6−/− mice, which are otherwise protected from hepatic fibrosis. Intrahepatic CD11b+F4/80+Gr1+ monocyte‐derived macrophages purified from CCl4‐treated animals, but not naïve bone marrow monocytes or control lymphocytes, directly activate HSCs in a TGF‐β–dependent manner in vitro. Conclusion: Inflammatory Gr1+ monocytes, recruited into the injured liver via CCR2‐dependent bone marrow egress, promote the progression of liver fibrosis. Thus, they may represent an interesting novel target for antifibrotic strategies. (HEPATOLOGY 2009;50:261–274.)


Gut | 2012

Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury

Christer Baeck; Alexander Wehr; Karlin Raja Karlmark; Felix Heymann; Mihael Vucur; Nikolaus Gassler; Sebastian Huss; Sven Klussmann; Dirk Eulberg; Tom Luedde; Christian Trautwein; Frank Tacke

Objective Monocyte chemoattractant protein-1 (MCP-1, CCL2), the primary ligand for chemokine receptor C–C chemokine receptor 2 (CCR2), is increased in livers of patients with non-alcoholic steatohepatitis (NASH) and murine models of steatohepatitis and fibrosis. It was recently shown that monocyte/macrophage infiltration into the liver upon injury is critically regulated by the CCL2/CCR2 axis and is functionally important for perpetuating hepatic inflammation and fibrogenesis. The structured L-enantiomeric RNA oligonucleotide mNOX-E36 (a so-called Spiegelmer) potently binds and inhibits murine MCP-1. Pharmacological inhibition of MCP-1 with mNOX-E36 was investigated in two murine models of chronic liver diseases. Methods Pharmacological inhibition of MCP-1 by thrice-weekly mNOX-E36 subcutaneously was tested in murine models of acute or chronic carbon tetrachloride (CCl4)- and methionine–choline-deficient (MCD) diet-induced chronic hepatic injury in vivo. Results Antagonising MCP-1 by mNOX-E36 efficiently inhibited murine monocyte chemotaxis in vitro as well as migration of Gr1+ (Ly6C+) blood monocytes into the liver upon acute toxic injury in vivo. In murine models of CCl4- and MCD diet-induced hepatic injury, the infiltration of macrophages into the liver was significantly decreased in anti-MCP-1-treated mice as found by fluorescence-activated cell sorting (FACS) analysis and immunohistochemistry. In line with lower levels of intrahepatic macrophages, proinflammatory cytokines (tumour necrosis factor α, interferon γ and interleukin 6) were significantly reduced in liver tissue. Overall fibrosis progression over 6 (CCl4) or 8 weeks (MCD diet) was not significantly altered by anti-MCP-1 treatment. However, upon MCD diet challenge a lower level of fatty liver degeneration (histology score, Oil red O staining, hepatic triglyceride content, lipogenesis genes) was detected in mNOX-E36-treated animals. mNOX-E36 also ameliorated hepatic steatosis upon therapeutic administration. Conclusions These results demonstrate the successful pharmacological inhibition of hepatic monocyte/macrophage infiltration by blocking MCP-1 during chronic liver damage in two in vivo models. The associated ameliorated steatosis development suggests that inhibition of MCP-1 is an interesting novel approach for pharmacological treatment in liver inflammation and steatohepatitis.


PLOS ONE | 2010

Functional Contribution of Elevated Circulating and Hepatic Non-Classical CD14+CD16+ Monocytes to Inflammation and Human Liver Fibrosis

Henning W. Zimmermann; Sebastian Seidler; Jacob Nattermann; Nikolaus Gassler; Claus Hellerbrand; Alma Zernecke; Jens J. W. Tischendorf; Tom Luedde; Ralf Weiskirchen; Christian Trautwein; Frank Tacke

Background Monocyte-derived macrophages critically perpetuate inflammatory responses after liver injury as a prerequisite for organ fibrosis. Experimental murine models identified an essential role for the CCR2-dependent infiltration of classical Gr1/Ly6C+ monocytes in hepatic fibrosis. Moreover, the monocyte-related chemokine receptors CCR1 and CCR5 were recently recognized as important fibrosis modulators in mice. In humans, monocytes consist of classical CD14+CD16− and non-classical CD14+CD16+ cells. We aimed at investigating the relevance of monocyte subpopulations for human liver fibrosis, and hypothesized that ‘non-classical’ monocytes critically exert inflammatory as well as profibrogenic functions in patients during liver disease progression. Methodology/Principal Findings We analyzed circulating monocyte subsets from freshly drawn blood samples of 226 patients with chronic liver disease (CLD) and 184 healthy controls by FACS analysis. Circulating monocytes were significantly expanded in CLD-patients compared to controls with a marked increase of the non-classical CD14+CD16+ subset that showed an activated phenotype in patients and correlated with proinflammatory cytokines and clinical progression. Correspondingly, CD14+CD16+ macrophages massively accumulated in fibrotic/cirrhotic livers, as evidenced by immunofluorescence and FACS. Ligands of monocyte-related chemokine receptors CCR2, CCR1 and CCR5 were expressed at higher levels in fibrotic and cirrhotic livers, while CCL3 and CCL4 were also systemically elevated in CLD-patients. Isolated monocyte/macrophage subpopulations were functionally characterized regarding cytokine/chemokine expression and interactions with primary human hepatic stellate cells (HSC) in vitro. CD14+CD16+ monocytes released abundant proinflammatory cytokines. Furthermore, CD14+CD16+, but not CD14+CD16− monocytes could directly activate collagen-producing HSC. Conclusions/Significance Our data demonstrate the expansion of CD14+CD16+ monocytes in the circulation and liver of CLD-patients upon disease progression and suggest their functional contribution to the perpetuation of intrahepatic inflammation and profibrogenic HSC activation in liver cirrhosis. The modulation of monocyte-subset recruitment into the liver via chemokines/chemokine receptors and their subsequent differentiation may represent promising approaches for therapeutic interventions in human liver fibrosis.


Cancer Cell | 2010

TAK1 Suppresses a NEMO-Dependent but NF-κB-Independent Pathway to Liver Cancer

Kira Bettermann; Mihael Vucur; Johannes Haybaeck; Christiane Koppe; Jörn Janssen; Felix Heymann; Achim Weber; Ralf Weiskirchen; Christian Liedtke; Nikolaus Gassler; Michael Müller; Rita Vos; M. Wolf; Yannick Boege; Gitta Maria Seleznik; Nicolas Zeller; Daniel Erny; Thomas J. Fuchs; Stefan Zoller; Stefano Cairo; Marie-Annick Buendia; Marco Prinz; Shizuo Akira; Frank Tacke; Mathias Heikenwalder; Christian Trautwein; Tom Luedde

The MAP3-kinase TGF-beta-activated kinase 1 (TAK1) critically modulates innate and adaptive immune responses and connects cytokine stimulation with activation of inflammatory signaling pathways. Here, we report that conditional ablation of TAK1 in liver parenchymal cells (hepatocytes and cholangiocytes) causes hepatocyte dysplasia and early-onset hepatocarcinogenesis, coinciding with biliary ductopenia and cholestasis. TAK1-mediated cancer suppression is exerted through activating NF-kappaB in response to tumor necrosis factor (TNF) and through preventing Caspase-3-dependent hepatocyte and cholangiocyte apoptosis. Moreover, TAK1 suppresses a procarcinogenic and pronecrotic pathway, which depends on NF-kappaB-independent functions of the I kappaB-kinase (IKK)-subunit NF-kappaB essential modulator (NEMO). Therefore, TAK1 serves as a gatekeeper for a protumorigenic, NF-kappaB-independent function of NEMO in parenchymal liver cells.


Hepatology | 2010

The fractalkine receptor CX3CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes

Karlin Raja Karlmark; Henning W. Zimmermann; Christoph Roderburg; Nikolaus Gassler; Hermann E. Wasmuth; Tom Luedde; Christian Trautwein; Frank Tacke

Chemokines modulate inflammatory responses that are prerequisites for organ fibrosis upon liver injury. Monocyte‐derived hepatic macrophages are critical for the development, maintenance, and resolution of hepatic fibrosis. The specific role of monocyte‐associated chemokine (C‐X3‐C motif) receptor 1 (CX3CR1) and its cognate ligand fractalkine [chemokine (C‐X3‐C motif) ligand 1)] in liver inflammation and fibrosis is currently unknown. We examined 169 patients with chronic liver diseases and 84 healthy controls; we found that CX3CL1 is significantly up‐regulated in the circulation upon disease progression, whereas CX3CR1 is down‐regulated intrahepatically in patients with advanced liver fibrosis or cirrhosis. To analyze the functional relevance of this pathway, two models of experimental liver fibrosis were applied to wild‐type (WT) and CX3CR1‐deficient mice. Fractalkine expression was induced upon liver injury in mice, primarily in hepatocytes and hepatic stellate cells. CX3CR1−/− animals developed greater hepatic fibrosis than WT animals with carbon tetrachloride–induced and bile duct ligation–induced fibrosis. CX3CR1−/− mice displayed significantly increased numbers of monocyte‐derived macrophages within the injured liver. Chimeric animals that underwent bone marrow transplantation revealed that CX3CR1 restricts hepatic fibrosis progression and monocyte accumulation through mechanisms exerted by infiltrating immune cells. In the absence of CX3CR1, intrahepatic monocytes develop preferentially into proinflammatory tumor necrosis factor–producing and inducible nitric oxide synthase–producing macrophages. CX3CR1 represents an essential survival signal for hepatic monocyte–derived macrophages by activating antiapoptotic bcl2 expression. Monocytes/macrophages lacking CX3CR1 undergo increased cell death after liver injury, which then perpetuates inflammation, promotes prolonged inflammatory monocyte infiltration into the liver, and results in enhanced liver fibrosis. Conclusion: CX3CR1 limits liver fibrosis in vivo by controlling the differentiation and survival of intrahepatic monocytes. The opposing regulation of CX3CR1 and fractalkine in patients suggests that pharmacological augmentation of this pathway may represent a possible therapeutic antifibrotic strategy. (HEPATOLOGY 2010;52:1769‐1782)


PLOS ONE | 2011

Interleukin-8 Is Activated in Patients with Chronic Liver Diseases and Associated with Hepatic Macrophage Accumulation in Human Liver Fibrosis

Henning W. Zimmermann; Sebastian Seidler; Nikolaus Gassler; Jacob Nattermann; Tom Luedde; Christian Trautwein; Frank Tacke

Background Interleukin-8 (IL-8, CXCL8) is a potent chemoattractant for neutrophils and contributes to acute liver inflammation. Much less is known about IL-8 in chronic liver diseases (CLD), but elevated levels were reported from alcoholic and hepatitis C-related CLD. We investigated the regulation of IL-8, its receptors CXCR1 and CXCR2 and possible IL-8 responding cells in CLD patients. Methodology Serum IL-8 levels were measured in CLD patients (n = 200) and healthy controls (n = 141). Intrahepatic IL-8, CXCR1 and CXCR2 gene expression was quantified from liver samples (n = 41), alongside immunohistochemical neutrophil (MPO) and macrophage (CD68) stainings. CXCR1 and CXCR2 expression was analyzed on purified monocytes from patients (n = 111) and controls (n = 31). In vitro analyses explored IL-8 secretion by different leukocyte subsets. Principal Findings IL-8 serum levels were significantly increased in CLD patients, especially in end-stage cirrhosis. Interestingly, patients with cholestatic diseases exhibited highest IL-8 serum concentrations. IL-8 correlated with liver function, inflammatory cytokines and non-invasive fibrosis markers. Intrahepatically, IL-8 and CXCR1 expression were strongly up-regulated. However, intrahepatic IL-8 could only be associated to neutrophil infiltration in patients with primary biliary cirrhosis (PBC). In non-cholestatic cirrhosis, increased IL-8 and CXCR1 levels were associated with hepatic macrophage accumulation. In line, CXCR1, but not CXCR2 or CXCR3, expression was increased on circulating monocytes from cirrhotic patients. Moreover, monocyte-derived macrophages from CLD patients, especially the non-classical CD16+ subtype, displayed enhanced IL-8 secretion in vitro. Conclusions IL-8 is strongly activated in CLD, thus likely contributing to hepatic inflammation. Our study suggests a novel role of IL-8 for recruitment and activation of hepatic macrophages via CXCR1 in human liver cirrhosis.


Journal of Clinical Investigation | 2010

Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice

Marie-Luise Berres; Rory R. Koenen; Anna Rueland; Mirko Moreno Zaldivar; Daniel Heinrichs; Hacer Sahin; P. Schmitz; Konrad L. Streetz; Thomas Berg; Nikolaus Gassler; Ralf Weiskirchen; Amanda E. I. Proudfoot; Christian Weber; Christian Trautwein; Hermann E. Wasmuth

Activation of hepatic stellate cells in response to chronic inflammation represents a crucial step in the development of liver fibrosis. However, the molecules involved in the interaction between immune cells and stellate cells remain obscure. Herein, we identify the chemokine CCL5 (also known as RANTES), which is induced in murine and human liver after injury, as a central mediator of this interaction. First, we showed in patients with liver fibrosis that CCL5 haplotypes and intrahepatic CCL5 mRNA expression were associated with severe liver fibrosis. Consistent with this, we detected Ccl5 mRNA and CCL5 protein in 2 mouse models of liver fibrosis, induced by either injection of carbon tetrachloride (CCl4) or feeding on a methionine and choline-deficient (MCD) diet. In these models, Ccl5-/- mice exhibited decreased hepatic fibrosis, with reduced stellate cell activation and immune cell infiltration. Transplantation of Ccl5-deficient bone marrow into WT recipients attenuated liver fibrosis, identifying infiltrating hematopoietic cells as the main source of Ccl5. We then showed that treatment with the CCL5 receptor antagonist Met-CCL5 inhibited cultured stellate cell migration, proliferation, and chemokine and collagen secretion. Importantly, in vivo administration of Met-CCL5 greatly ameliorated liver fibrosis in mice and was able to accelerate fibrosis regression. Our results define a successful therapeutic approach to reduce experimental liver fibrosis by antagonizing Ccl5 receptors.


Gastroenterology | 2009

Antifibrotic Effects of CXCL9 and Its Receptor CXCR3 in Livers of Mice and Humans

Hermann E. Wasmuth; Frank Lammert; Mirko Moreno Zaldivar; Ralf Weiskirchen; Claus Hellerbrand; David Scholten; Marie-Luise Berres; Henning W. Zimmermann; Konrad L. Streetz; Frank Tacke; Sonja Hillebrandt; P. Schmitz; Hildegard Keppeler; Thomas Berg; Edgar Dahl; Nikolaus Gassler; Scott L. Friedman; Christian Trautwein

BACKGROUND & AIMS Fibrosis is the hallmark of chronic liver diseases, yet many aspects of its mechanism remain to be defined. Chemokines are ubiquitous chemotactic molecules that mediate many acute and chronic inflammatory conditions, and CXC chemokine genes colocalize with a locus previously shown to include fibrogenic genes. We investigated the roles of the chemokine CXCL9 and its receptor CXCR3 in liver fibrosis. METHODS The effects of CXCL variants on fibrogenesis were analyzed using samples from patients with hepatitis C virus infection and by induction of fibrosis in CXCR3(-/-) and wild-type mice. In mice, intrahepatic immune cell subsets were investigated and interferon gamma messenger RNA levels were measured at baseline and after injury. Human serum CXCL9 levels were measured and correlated with CXCL9 variant and fibrosis severity. The effects of stimulation with CXCL9 were investigated on human hepatic stellate cells (LX-2). RESULTS Specific CXCL9 variants were associated with liver fibrosis in mice and humans; CXCL9 serum concentrations correlated with genotypes and levels of fibrosis in patients. In contrast to other chemokines, CXCL9 exerted antifibrotic effects in vitro, suppressing collagen production in LX-2 cells. CXCR3(-/-) mice had increased liver fibrosis; progression was associated with decreased numbers of intrahepatic interferon gamma-positive T cells and reduced interferon gamma messenger RNA, indicating that CXCL9-CXCR3 regulates Th1-associated immune pathways. CONCLUSIONS This is the first description of a chemokine-based antifibrotic pathway in the liver; antifibrotic therapies might be developed to modulate CXC chemokine levels.


Journal of Cerebral Blood Flow and Metabolism | 2008

A Neuroprotective Function for the Hematopoietic Protein Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF)

Wolf Rüdiger Schäbitz; Carola Krüger; Claudia Pitzer; Daniela Weber; Rico Laage; Nikolaus Gassler; Jaroslaw Aronowski; Walter Mier; Friederike Kirsch; Tanjew Dittgen; Alfred Bach; Clemens Sommer; Armin Schneider

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine responsible for the proliferation, differentiation, and maturation of cells of the myeloid lineage, which was cloned more than 20 years ago. Here we uncovered a novel function of GM-CSF in the central nervous system (CNS). We identified the GM-CSF α-receptor as an upregulated gene in a screen for ischemia-induced genes in the cortex. This receptor is broadly expressed on neurons throughout the brain together with its ligand and induced by ischemic insults. In primary cortical neurons and human neuroblastoma cells, GM-CSF counteracts programmed cell death and induces BCL-2 and BCL-Xl expression in a dose- and time-dependent manner. Of the signaling pathways studied, GM-CSF most prominently induced the PI3K-Akt pathway, and inhibition of Akt strongly decreased antiapoptotic activity. Intravenously given GM-CSF passes the blood—brain barrier, and decreases infarct damage in two different experimental stroke models (middle cerebral artery occlusion (MCAO), and combined common carotid/distal MCA occlusion) concomitant with induction of BCL-Xl expression. Thus, GM-CSF acts as a neuroprotective protein in the CNS. This finding is remarkably reminiscent of the recently discovered functionality of two other hematopoietic factors, erythropoietin and granulocyte colony-stimulating factor in the CNS. The identification of a third hematopoietic factor acting as a neurotrophic factor in the CNS suggests a common principle in the functional evolution of these factors. Clinically, GM-CSF now broadens the repertoire of hematopoietic factors available as novel drug candidates for stroke and neurodegenerative diseases.

Collaboration


Dive into the Nikolaus Gassler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Tacke

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F.J. Cubero

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Luedde

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge