Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolaus S. Trede is active.

Publication


Featured researches published by Nikolaus S. Trede.


Immunity | 2004

The Use of Zebrafish to Understand Immunity

Nikolaus S. Trede; David M. Langenau; David Traver; A. Thomas Look; Leonard I. Zon

For decades immunologists have relied heavily on the mouse model for their experimental designs. With the realization of the important role innate immunity plays in orchestrating immune responses, invertebrates such as worms and flies have been added to the repertoire. Here, we discuss the advent of the zebrafish as a powerful vertebrate model organism that promises to positively impact immunologic research.


Nature | 2006

Mitoferrin is essential for erythroid iron assimilation

George C. Shaw; John J. Cope; Liangtao Li; Kenneth Corson; Candace Hersey; Gabriele E. Ackermann; Babette Gwynn; Amy J. Lambert; Rebecca A. Wingert; David Traver; Nikolaus S. Trede; Bruce Barut; Yi Zhou; Emmanuel Minet; Adriana Donovan; Alison Brownlie; Rena Balzan; Mitchell J. Weiss; Luanne L. Peters; Jerry Kaplan; Leonard I. Zon; Barry H. Paw

Iron has a fundamental role in many metabolic processes, including electron transport, deoxyribonucleotide synthesis, oxygen transport and many essential redox reactions involving haemoproteins and Fe–S cluster proteins. Defective iron homeostasis results in either iron deficiency or iron overload. Precise regulation of iron transport in mitochondria is essential for haem biosynthesis, haemoglobin production and Fe–S cluster protein assembly during red cell development. Here we describe a zebrafish mutant, frascati (frs), that shows profound hypochromic anaemia and erythroid maturation arrest owing to defects in mitochondrial iron uptake. Through positional cloning, we show that the gene mutated in the frs mutant is a member of the vertebrate mitochondrial solute carrier family (SLC25) that we call mitoferrin (mfrn). mfrn is highly expressed in fetal and adult haematopoietic tissues of zebrafish and mouse. Erythroblasts generated from murine embryonic stem cells null for Mfrn (also known as Slc25a37) show maturation arrest with severely impaired incorporation of 55Fe into haem. Disruption of the yeast mfrn orthologues, MRS3 and MRS4, causes defects in iron metabolism and mitochondrial Fe–S cluster biogenesis. Murine Mfrn rescues the defects in frs zebrafish, and zebrafish mfrn complements the yeast mutant, indicating that the function of the gene may be highly conserved. Our data show that mfrn functions as the principal mitochondrial iron importer essential for haem biosynthesis in vertebrate erythroblasts.


Developmental and Comparative Immunology | 2008

Immunology and zebrafish : Spawning new models of human disease

Nathan Meeker; Nikolaus S. Trede

The zebrafish has emerged as a powerful new vertebrate model of human disease. Initially prominent in developmental biology, the zebrafish has now been adopted into varied fields of study including immunology. In this review, we describe the characteristics of the zebrafish, which make it a versatile model, including a description of its immune system with its remarkable similarities to its mammalian counterparts. We review the zebrafish disease models of innate and adaptive immunity. Models of immune system malignancies are discussed that are either based on oncogene over-expression or on our own forward-genetic screen that was designed to identify new models of immune dysregulation.


Advances in Immunology | 2003

The zebrafish as a model organism to study development of the immune system.

David Traver; Philippe Herbomel; Elizabeth Patton; Ryan D. Murphey; Jeffrey A. Yoder; Gary W. Litman; André Catic; Chris T. Amemiya; Leonard I. Zon; Nikolaus S. Trede

Publisher Summary Early events in the development of the primitive and definitive blood forming system are still poorly understood. Additionally, the specification of both B and T cells occurs during embryogenesis and, given the completion of this process before birth, are difficult to study in mammals by forward genetics. Historically, the major strength of the zebrafish has been the opportunity it offered to carry forward genetic screens in a vertebrate organism in a relatively restricted space. Establishing the zebrafish as a model system for the study of the immune system will provide an alternative and complementary tool to the use of forward genetic screens in mice. Rapid advances in a variety of fields have allowed the zebrafish to become a more versatile tool for immunology.


BioTechniques | 2007

Method for isolation of PCR-ready genomic DNA from zebrafish tissues.

Nathan D. Meeker; Sarah Hutchinson; Linh Ho; Nikolaus S. Trede

Here we describe a method for the isolation of PCR-ready genomic DNA from various zebrafish tissues that is based on a previously published murine protocol. The DNA solutions are of sufficient quality to allow PCR detection of transgenes from all commonly used zebrafish tissues. In sperm, transgene amplification was successful even when diluted 1000-fold, allowing easy identification of transgenic founders. Given its speed and low cost, we anticipate that the adoption of this method will streamline DNA isolation for zebrafish research.


Nature Genetics | 2009

Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II

Klaus Schwarz; Achille Iolascon; Fatima Verissimo; Nikolaus S. Trede; Wyatt Horsley; Wen Chen; Barry H. Paw; Karl-Peter Hopfner; Karlheinz Holzmann; Roberta Russo; Maria Rosaria Esposito; Daniela Spano; Luigia De Falco; Katja Heinrich; Brigitte Joggerst; Markus Rojewski; Silverio Perrotta; Jonas Denecke; Ulrich Pannicke; Jean Delaunay; Rainer Pepperkok; Hermann Heimpel

Congenital dyserythropoietic anemias (CDAs) are phenotypically and genotypically heterogeneous diseases. CDA type II (CDAII) is the most frequent CDA. It is characterized by ineffective erythropoiesis and by the presence of bi- and multinucleated erythroblasts in bone marrow, with nuclei of equal size and DNA content, suggesting a cytokinesis disturbance. Other features of the peripheral red blood cells are protein and lipid dysglycosylation and endoplasmic reticulum double-membrane remnants. Development of other hematopoietic lineages is normal. Individuals with CDAII show progressive splenomegaly, gallstones and iron overload potentially with liver cirrhosis or cardiac failure. Here we show that the gene encoding the secretory COPII component SEC23B is mutated in CDAII. Short hairpin RNA (shRNA)-mediated suppression of SEC23B expression recapitulates the cytokinesis defect. Knockdown of zebrafish sec23b also leads to aberrant erythrocyte development. Our results provide in vivo evidence for SEC23B selectivity in erythroid differentiation and show that SEC23A and SEC23B, although highly related paralogous secretory COPII components, are nonredundant in erythrocyte maturation.


Trends in Immunology | 2001

Fishing for lymphoid genes

Nikolaus S. Trede; Augustin Zapata; Leonard I. Zon

Thymic organogenesis and T-cell lymphopoiesis are crucial interdependent processes that establish a functional vertebrate immune system. The current understanding of vertebrate thymic development during embryogenesis remains incomplete and would benefit from novel approaches. The zebrafish Danio rerio is a powerful developmental and genetic system for the dissection of early events in the ontogeny of the immune system. Forward genetic screens have uncovered genes involved in hematopoiesis, and specific screens are being designed to examine the genes that regulate T-cell development and the origin of the thymus. Studies of the zebrafish should improve our understanding of lymphoid development in vertebrates.


Nature Genetics | 2003

Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency.

Barry H. Paw; Alan J. Davidson; Yi Zhou; Rong Li; Stephen J. Pratt; Charles Lee; Nikolaus S. Trede; Alison Brownlie; Adriana Donovan; Eric C. Liao; James Ziai; Anna Drejer; Wen Guo; Carol H. Kim; Babette Gwynn; Luanne L. Peters; Marina N. Chernova; Seth L. Alper; A. Zapata; Sunitha N. Wickramasinghe; Matthew J. Lee; Samuel E. Lux; Andreas Fritz; John H. Postlethwait; Leonard I. Zon

Most eukaryotic cell types use a common program to regulate the process of cell division. During mitosis, successful partitioning of the genetic material depends on spatially coordinated chromosome movement and cell cleavage. Here we characterize a zebrafish mutant, retsina (ret), that exhibits an erythroid-specific defect in cell division with marked dyserythropoiesis similar to human congenital dyserythropoietic anemia. Erythroblasts from ret fish show binuclearity and undergo apoptosis due to a failure in the completion of chromosome segregation and cytokinesis. Through positional cloning, we show that the ret mutation is in a gene (slc4a1) encoding the anion exchanger 1 (also called band 3 and AE1), an erythroid-specific cytoskeletal protein. We further show an association between deficiency in Slc4a1 and mitotic defects in the mouse. Rescue experiments in ret zebrafish embryos expressing transgenic slc4a1 with a variety of mutations show that the requirement for band 3 in normal erythroid mitosis is mediated through its protein 4.1R–binding domains. Our report establishes an evolutionarily conserved role for band 3 in erythroid-specific cell division and illustrates the concept of cell-specific adaptation for mitosis.


PLOS Biology | 2004

The Zebrafish moonshine Gene Encodes Transcriptional Intermediary Factor 1γ, an Essential Regulator of Hematopoiesis

David G Ransom; Nathan Bahary; Knut Niss; David Traver; Caroline E. Burns; Nikolaus S. Trede; Noelle Paffett-Lugassy; Walter J Saganic; C. Anthoney Lim; Candace Hersey; Yi Zhou; Bruce Barut; Shuo Lin; Paul D. Kingsley; James Palis; Stuart H. Orkin; Leonard I. Zon

Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding proteins that regulate transcription in concert with coactivators and corepressors. Mutations in the zebrafish moonshine (mon) gene specifically disrupt both embryonic and adult hematopoiesis, resulting in severe red blood cell aplasia. We report that mon encodes the zebrafish ortholog of mammalian transcriptional intermediary factor 1γ (TIF1γ) (or TRIM33), a member of the TIF1 family of coactivators and corepressors. During development, hematopoietic progenitor cells in mon mutants fail to express normal levels of hematopoietic transcription factors, including gata1, and undergo apoptosis. Three different mon mutant alleles each encode premature stop codons, and enforced expression of wild-type tif1γ mRNA rescues embryonic hematopoiesis in homozygous mon mutants. Surprisingly, a high level of zygotic tif1γ mRNA expression delineates ventral mesoderm during hematopoietic stem cell and progenitor formation prior to gata1 expression. Transplantation studies reveal that tif1γ functions in a cell-autonomous manner during the differentiation of erythroid precursors. Studies in murine erythroid cell lines demonstrate that Tif1γ protein is localized within novel nuclear foci, and expression decreases during erythroid cell maturation. Our results establish a major role for this transcriptional intermediary factor in the differentiation of hematopoietic cells in vertebrates.


Science | 2013

Ribosomal Protein SA Haploinsufficiency in Humans with Isolated Congenital Asplenia

Alexandre Bolze; Nizar Mahlaoui; Minji Byun; Bridget Turner; Nikolaus S. Trede; Steven R. Ellis; Avinash Abhyankar; Yuval Itan; Etienne Patin; Samuel Brebner; Paul Sackstein; Anne Puel; Capucine Picard; Laurent Abel; Lluis Quintana-Murci; Saul N. Faust; Anthony P. Williams; Richard Baretto; Michael Duddridge; Usha Kini; Andrew J. Pollard; Catherine Gaud; Pierre Frange; Daniel Orbach; Jean-François Emile; Jean-Louis Stephan; Ricardo U. Sorensen; Alessandro Plebani; Lennart Hammarström; Mary Ellen Conley

Spleen Knockout Explained Isolated congenital asplenia (ICA) is a rare disorder where patients are born without a spleen and are at increased risk of bacterial infection but have no other developmental abnormalities. Through sequence analysis of familial and sporadic cases, Bolze et al. (p. 976, published online 11 April) found that ICA patients carry mutations in the gene encoding ribosomal protein SA and as a result express about half the normal amount of this protein. The mechanism by which reduced expression of a housekeeping protein causes an organ-specific defect remains unclear. A rare human disorder, characterized by the absence of a spleen at birth, is associated with mutations in a ribosomal protein. Isolated congenital asplenia (ICA) is characterized by the absence of a spleen at birth in individuals with no other developmental defects. The patients are prone to life-threatening bacterial infections. The unbiased analysis of exomes revealed heterozygous mutations in RPSA in 18 patients from eight kindreds, corresponding to more than half the patients and over one-third of the kindreds studied. The clinical penetrance in these kindreds is complete. Expression studies indicated that the mutations carried by the patients—a nonsense mutation, a frameshift duplication, and five different missense mutations—cause autosomal dominant ICA by haploinsufficiency. RPSA encodes ribosomal protein SA, a component of the small subunit of the ribosome. This discovery establishes an essential role for RPSA in human spleen development.

Collaboration


Dive into the Nikolaus S. Trede's collaboration.

Top Co-Authors

Avatar

Leonard I. Zon

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raif S. Geha

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Talal A. Chatila

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

David Traver

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Barry H. Paw

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Yi Zhou

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge