Nikolay M. Budnev
Irkutsk State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nikolay M. Budnev.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2015
P.A. Bezyazeekov; Nikolay M. Budnev; O. Gress; A. Haungs; R. Hiller; T. Huege; Y. Kazarina; M. Kleifges; E.N. Konstantinov; E. E. Korosteleva; D. Kostunin; O. Krömer; L. Kuzmichev; E. Levinson; N. Lubsandorzhiev; R. R. Mirgazov; R. Monkhoev; A. Pakhorukov; L. Pankov; V. Prosin; G.I. Rubtsov; C. Rühle; F.G. Schröder; R. Wischnewski; A. Zagorodnikov
Abstract Tunka-Rex is a radio detector for cosmic-ray air showers in Siberia, triggered by Tunka-133, a co-located air-Cherenkov detector. The main goal of Tunka-Rex is the cross-calibration of the two detectors by measuring the air-Cherenkov light and the radio signal emitted by the same air showers. This way we can explore the precision of the radio-detection technique, especially for the reconstruction of the primary energy and the depth of the shower maximum. The latter is sensitive to the mass of the primary cosmic-ray particles. In this paper we describe the detector setup and explain how electronics and antennas have been calibrated. The analysis of data of the first season proves the detection of cosmic-ray air showers and therefore, the functionality of the detector. We confirm the expected dependence of the detection threshold on the geomagnetic angle and the correlation between the energy of the primary cosmic-ray particle and the radio amplitude. Furthermore, we compare reconstructed amplitudes of radio pulses with predictions from CoREAS simulations, finding agreement within the uncertainties.
Astronomy Reports | 2013
E. Gorbovskoy; V. Lipunov; Victor G. Kornilov; A.A. Belinski; D. Kuvshinov; N. V. Tyurina; A.V. Sankovich; A. V. Krylov; N. Shatskiy; P. Balanutsa; V. Chazov; A. Kuznetsov; A. S. Zimnukhov; V. Shumkov; S. Shurpakov; V. Senik; Dilia Gareeva; M. Pruzhinskaya; A. G. Tlatov; A. V. Parkhomenko; D. Dormidontov; V. Krushinsky; A. Punanova; I. S. Zalozhnyh; A. Popov; A. Yu. Burdanov; S. A. Yazev; Nikolay M. Budnev; K. Ivanov; E. Konstantinov
The main stages in the creation of the Russian segment of the MASTER network of robotic telescopes is described. This network is designed for studies of the prompt optical emission of gammaray bursts (GRBs; optical emission synchronous with the gamma-ray radiation) and surveys of the sky aimed at discovering uncataloged objects and photometric studies for various programs. The first results obtained by the network, during its construction and immediately after its completion in December 2010, are presented. Eighty-nine alert pointings at GRBs (in most cases, being the first ground telescopes to point at the GRBs) were made from September 2006 through July 2011. The MASTER network holds first place in the world in terms of the total number of first pointings, and currently more than half of first pointings at GRBs by ground telescopes are made by the MASTER network. Photometric light curves of GRB 091020, GRB 091127, GRB 100901A, GRB 100906A, GRB 10925A, GRB 110106A, GRB 110422A, and GRB 110530A are presented. It is especially important that prompt emission was observed for GRB 100901A and GRB 100906A, and thar GRB 091127, GRB 110422A, and GRB 110106A were observed from the first seconds in two polarizations. Very-wide-field cameras carried out synchronous observations of the prompt emission of GRB 081102, GRB 081130B, GRB 090305B, GRB 090320B, GRB 090328, and GRB 090424. Discoveries of Type Ia supernovae are ongoing (among them the brightest supernova in 2009): 2008gy, 2009nr, 2010V, and others. In all, photometry of 387 supernovae has been carried out, 43 of which were either discovered or first observed with MASTER telescopes; more than half of these are Type Ia supernovae. Photometric studies of the open clusters NGC 7129 and NGC 7142 have been conducted, leading to the discovery of 38 variable stars. Sixty-nine optical transients have been discovered.
Monthly Notices of the Royal Astronomical Society | 2011
E. Gorbovskoy; V. Kornilov; A.V. Sankovich; K. Ivanov; V. Krushinski; D.S. Zimnukhov; Nikolay M. Budnev; D.V. Dormidontov; J. Gorosabel; A.A. Popov; D. Kuvshinov; S. Yazev; R. Sánchez-Ramírez; E. Konstantinov; V. Sennik; N. Tyurina; D. Varda; I. Kudelina; V. Lipunov; V. Poleschuk; N. Shatskiy; A.A. Belinski; O. Chvalaev; A. Kuznetsov; Y. Sergienko; A. J. Castro-Tirado; P. Balanutsa; V. Yurkov; Martin Jelinek; V. Chazov
We present results of the prompt, early, and afterglow optical observations of five gamma-ray bursts, GRBs 100901A, 100902A, 100905A, 100906A, and 101020A, made with the Mobile Astronomical System of TElescope-Robots in Russia (MASTER-II net), the 1.5-m telescope of Sierra-Nevada Observatory, and the 2.56-m Nordic Optical Telescope. For two sources, GRB 100901A and GRB 100906A, we detected optical counterparts and obtained light curves starting before cessation of gamma-ray emission, at 113 s and 48 s after the trigger, respectively. Observations of GRB 100906A were conducted with two polarizing filters. Observations of the other three bursts gave the upper limits on the optical flux; their properties are briefly discussed. More detailed analysis of GRB 100901A and GRB 100906A supplemented by Swift data provides the following results and indicates different origins of the prompt optical radiation in the two bursts. The light curves patterns and spectral distributions suggest a common production site of the prompt optical and high-energy emission in GRB 100901A. Results of spectral fits for GRB 100901A in the range from the optical to X-rays favor power-law energy distributions with similar values of the optical extinction in the host galaxy. GRB 100906A produced a smoothly peaking optical light curve suggesting that the prompt optical radiation in this GRB originated in a front shock. This is supported by a spectral analysis. We have found that the Amati and Ghirlanda relations are satisfied for GRB 100906A. An upper limit on the value of the optical extinction on the host of GRB 100906A is obtained.
Nature | 2017
Eleonora Troja; V. Lipunov; Carole G. Mundell; N. Butler; Alan M. Watson; Shiho Kobayashi; S. B. Cenko; F. E. Marshall; R. Ricci; Andrew S. Fruchter; M. H. Wieringa; E. Gorbovskoy; V. Kornilov; A. Kutyrev; W. H. Lee; V. Toy; N. Tyurina; Nikolay M. Budnev; D. Buckley; J. Gonzalez; O. Gress; Assaf Horesh; M. I. Panasyuk; Jason X. Prochaska; Enrico Ramirez-Ruiz; R.R. Lopez; Michael G. Richer; Carlos G. Román-Zúñiga; M. Serra-Ricart; V. Yurkov
Newly formed black holes of stellar mass launch collimated outflows (jets) of ionized matter that approach the speed of light. These outflows power prompt, brief and intense flashes of γ-rays known as γ-ray bursts (GRBs), followed by longer-lived afterglow radiation that is detected across the electromagnetic spectrum. Measuring the polarization of the observed GRB radiation provides a direct probe of the magnetic fields in the collimated jets. Rapid-response polarimetric observations of newly discovered bursts have probed the initial afterglow phase, and show that, minutes after the prompt emission has ended, the degree of linear polarization can be as high as 30 per cent—consistent with the idea that a stable, globally ordered magnetic field permeates the jet at large distances from the central source. By contrast, optical and γ-ray observations during the prompt phase have led to discordant and often controversial results, and no definitive conclusions have been reached regarding the origin of the prompt radiation or the configuration of the magnetic field. Here we report the detection of substantial (8.3 ± 0.8 per cent from our most conservative simulation), variable linear polarization of a prompt optical flash that accompanied the extremely energetic and long-lived prompt γ-ray emission from GRB 160625B. Our measurements probe the structure of the magnetic field at an early stage of the jet, closer to its central black hole, and show that the prompt phase is produced via fast-cooling synchrotron radiation in a large-scale magnetic field that is advected from the black hole and distorted by dissipation processes within the jet.
Monthly Notices of the Royal Astronomical Society | 2016
V. Lipunov; Javier Gorosabel; M. Pruzhinskaya; A. de Ugarte Postigo; V. Pelassa; A. E. Tsvetkova; I. V. Sokolov; D. A. Kann; Dong Xu; E. Gorbovskoy; V. V. Krushinski; Victor G. Kornilov; P. V. Balanutsa; S. V. Boronina; Nikolay M. Budnev; Z. Cano; A. J. Castro-Tirado; V. V. Chazov; V. Connaughton; C. Delvaux; D. D. Frederiks; J. F. U. Fynbo; A. V. Gabovich; A. Goldstein; J. Greiner; O. Gress; K. Ivanov; P. Jakobsson; Sylvio Klose; F. Knust
We report the early discovery of the optical afterglow of gamma-ray burst (GRB) 140801A in the 137 deg
Monthly Notices of the Royal Astronomical Society | 2016
E. Gorbovskoy; V. Lipunov; D. A. H. Buckley; Victor G. Kornilov; P. Balanutsa; N. Tyurina; A. Kuznetsov; D. Kuvshinov; I. Gorbunov; D. Vlasenko; E. Popova; V. Chazov; S. Potter; M. Kotze; A. Y. Kniazev; O. Gress; Nikolay M. Budnev; K. Ivanov; S. Yazev; A. Tlatov; V. Senik; D. V. Dormidontov; A. V. Parhomenko; V. V. Krushinski; I. S. Zalozhnich; R. Alberto Castro-Tirado; R. Sánchez-Ramírez; Y. Sergienko; A. Gabovich; V. Yurkov
^2
International Journal of Modern Physics A | 2005
D. V. Chernov; N. N. Kalmykov; E. E. Korosteleva; L. Kuzmichev; V. Prosin; M. I. Panasyuk; A. Shirokov; I. V. Yashin; Nikolay M. Budnev; O. Gress; L. Pankov; Yu. V. Parfenov; Yu. Semeney; B. K. Lubsandorzhiev; P. G. Pokhil; V. S. Ptuskin; Ch. Spiering; R. Wischnewski; G. Navarra
3-
The Astrophysical Journal | 2017
V. Lipunov; E. Gorbovskoy; V. Kornilov; N. Tyurina; P. Balanutsa; A. Kuznetsov; D. Vlasenko; D. Kuvshinov; I. Gorbunov; D. Buckley; A. V. Krylov; R. Podesta; C. Lopez; F. Podesta; H. Levato; C. Saffe; C. Mallamachi; S. Potter; Nikolay M. Budnev; O. Gress; Yu. Ishmuhametova; V. Vladimirov; D.S. Zimnukhov; V. Yurkov; Y. Sergienko; A. Gabovich; R. Rebolo; M. Serra-Ricart; G. Israelyan; V. Chazov
\sigma
HIGH ENERGY GAMMA-RAY ASTRONOMY: 5th International Meeting on High Energy Gamma-Ray Astronomy | 2012
M. Tluczykont; D. Hampf; U. Einhaus; D. Horns; M. Brückner; Nikolay M. Budnev; M Büker; O. Chvalaev; A. Dyachok; S. Epimakhov; O. Gress; A. Ivanova; E.N. Konstantinov; E. E. Korosteleva; M. Kunnas; L. Kuzmichev; B. K. Lubsandorzhiev; N. Lubsandorzhiev; R. R. Mirgazov; R. Nachtigall; A. Pakhorukov; V. Poleschuk; V. Prosin; G. Rubtsov; P Satunin; Yu. Semeney; C. Spiering; L.G. Sveshnikova; R. Wischnewski; A. Zagorodnikov
error-box of the Fermi Gamma-ray Burst Monitor (GBM). MASTER is the only observatory that automatically react to all Fermi alerts. GRB 140801A is one of the few GRBs whose optical counterpart was discovered solely from its GBM localization. The optical afterglow of GRB 140801A was found by MASTER Global Robotic Net 53 sec after receiving the alert, making it the fastest optical detection of a GRB from a GBM error-box. Spectroscopy obtained with the 10.4-m Gran Telescopio Canarias and the 6-m BTA of SAO RAS reveals a redshift of
Journal of Physics: Conference Series | 2015
A. Porelli; D Bogorodskii; M. Brückner; Nikolay M. Budnev; O. Chvalaev; A. Dyachok; S. Epimakhov; T Eremin; O. Gress; T. Gress; D. Horns; A. Ivanova; S Kiruhin; E.N. Konstantinov; E. E. Korosteleva; M. Kunnas; L. A. Kuzmichev; B. Lubsandorzhiev; N Lubsandorzhiev; R. R. Mirgazov; R. Mirzoyan; R. Monkhoev; R. Nachtigall; A. Pakhorukov; V Platonov; V. Poleschuk; V. Prosin; G. Rubtsov; M. Rüger; V. Samoliga
z=1.32