Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolay Natchev is active.

Publication


Featured researches published by Nikolay Natchev.


Journal of the Royal Society Interface | 2013

Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism

Egon Heiss; Nikolay Natchev; Michaela Gumpenberger; Anton Weissenbacher; Sam Van Wassenbergh

During the evolutionary transition from fish to tetrapods, a shift from uni- to bidirectional suction feeding systems followed a reduction in the gill apparatus. Such a shift can still be observed during metamorphosis of salamanders, although many adult salamanders retain their aquatic lifestyle and feed by high-performance suction. Unfortunately, little is known about the interplay between jaws and hyobranchial motions to generate bidirectional suction flows. Here, we study the cranial morphology, as well as kinematic and hydrodynamic aspects related to prey capture in the Chinese giant salamander (Andrias davidianus). Compared with fish and previously studied amphibians, A. davidianus uses an alternative suction mechanism that mainly relies on accelerating water by separating the ‘plates’ formed by the long and broad upper and lower jaw surfaces. Computational fluid dynamics simulations, based on three-dimensional morphology and kinematical data from high-speed videos, indicate that the viscerocranial elements mainly serve to accommodate the water that was given a sufficient anterior-to-posterior impulse beforehand by powerful jaw separation. We hypothesize that this modified way of generating suction is primitive for salamanders, and that this behaviour could have played an important role in the evolution of terrestrial life in vertebrates by releasing mechanical constraints on the hyobranchial system.


Journal of Experimental Zoology | 2015

Modeling Neck Mobility in Fossil Turtles

Ingmar Werneburg; Juliane K. Hinz; Michaela Gumpenberger; Virginie Volpato; Nikolay Natchev; Walter G. Joyce

Turtles have the unparalleled ability to retract their heads and necks within their shell but little is known about the evolution of this trait. Extensive analysis of neck mobility in turtles using radiographs, CT scans, and morphometry reveals that basal turtles possessed less mobility in the neck relative to their extant relatives, although the anatomical prerequisites for modern mobility were already established. Many extant turtles are able to achieve hypermobility by dislocating the central articulations, which raises cautions about reconstructing the mobility of fossil vertebrates. A 3D-model of the Late Triassic turtle Proganochelys quenstedti reveals that this early stem turtle was able to retract its head by tucking it sideways below the shell. The simple ventrolateral bend seen in this stem turtle, however, contrasts with the complex double-bend of extant turtles. The initial evolution of neck retraction therefore occurred in a near-synchrony with the origin of the turtle shell as a place to hide the unprotected neck. In this early, simplified retraction mode, the conical osteoderms on the neck provided further protection.


Journal of Morphology | 2009

Three Types of Cutaneous Glands in the Skin of the Salamandrid Pleurodeles waltl. A Histological and Ultrastructural Study

Egon Heiss; Nikolay Natchev; Alexander Rabanser; Josef Weisgram; Helge Hilgers

Histological and ultrastructural investigations revealed three different multicellular skin gland types in the salamandrid Pleurodeles waltl. The mucous glands are small, with one layer of secretory cells surrounding a central lumen; they produce the viscous and slippery mucus film that has various functions in amphibians. The serous glands can be divided based on their histological and ultrastructural characters into the granular gland Type I (GGI) and the granular gland Type II (GGII). The first type (GGI) is moderately sized and distributed throughout the body surface, with higher concentrations in the parotoid and back regions. In contrast, the second type (GGII) is very large (for Pleurodeles) and was found only in the tail, with highest concentration in the tail dorsum. Both granular gland types contain mainly proteinaceous materials but differ in their morphological features including size, shape, cellular organization and vesicle distribution, vesicle size and vesicle shape. Both GGI and GGII are especially concentrated in body parts that are presented to an attacking predator and are hypothesized to produce repellent to poisonous substances to thwart potential aggressors. J. Morphol., 2009.


Zoology | 2009

Analysis of prey capture and food transport kinematics in two Asian box turtles, Cuora amboinensis and Cuora flavomarginata (Chelonia, Geoemydidae), with emphasis on terrestrial feeding patterns.

Nikolay Natchev; Egon Heiss; Patrick Lemell; Daniel Stratev; Josef Weisgram

This study examines the kinematics and morphology of the feeding apparatus of two geoemydid chelonians, the Malayan (Amboina) box turtle (Cuora amboinensis) and the yellow-margined box turtle (Cuora flavomarginata). Both species are able to feed on land as well as in water. Feeding patterns were analysed by high-speed cinematography. The main focus of the present study is on the terrestrial feeding strategies in both Asian box turtles, because feeding on land has probably evolved de novo within the ancestrally aquatic genus Cuora. During terrestrial feeding (analysed for both species), the initial food prehension is always done by the jaws, whereas intraoral food transport and pharyngeal packing actions are tongue-based. The food uptake modes in Cuoras differ considerably from those described for purely terrestrial turtles. Lingual food prehension is typical of all tortoises (Testudinidae), but is absent in C. amboinensis and C. flavomarginata. A previous study on Terrapene carolina shows that this emydid turtle protrudes the tongue during ingestion on land, but that the first contact with the food item occurs by the jaws. Both Asian box turtles investigated here have highly movable, fleshy tongues; nonetheless, the hyolingual complex remains permanently retracted during initial prey capture. In aquatic feeding (analysed for C. amboinensis only), the prey is captured by a fast forward strike of the head (ram feeding). As opposed to ingestion on land, in the underwater grasp the hyoid protracts prior to jaw opening. The head morphology of the investigated species differs. In contrast to the Malayan box turtle, C. flavomarginata exhibits a more complexly structured dorsal lingual epithelium, a considerable palatal vault, weaker jaw adductor muscles and a simplified trochlear complex. The differences in the hyolingual morphology reflect the kinematic patterns of the terrestrial feeding transport.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2010

The Fish in the Turtle: On the Functionality of the Oropharynx in the Common Musk Turtle Sternotherus odoratus (Chelonia, Kinosternidae) Concerning Feeding and Underwater Respiration

Egon Heiss; Nikolay Natchev; Christian Beisser; Patrick Lemell; Josef Weisgram

In tetrapods, the oropharyngeal cavity and its anatomical structures are mainly, but not exclusively, responsible for the uptake and intraoral transport of food. In this study, we provide structural evidence for a second function of the oropharynx in the North American common musk turtle, Sternotherus odoratus, Kinosternidae: aquatic gas exchange. Using high‐speed video, we demonstrate that S. odoratus can grasp food on land by its jaws, but is afterward incapable of lingual based intraoral transport; food is always lost during such an attempt. Scanning electron microscopy and light microscopy reveal that the reason for this is a poorly developed tongue. Although small, the tongue bears a variety of lobe‐like papillae, which might be misinterpreted as an adaptation for terrestrial food uptake. Similar papillae also cover most of the oropharynx. They are highly vascularized as shown by light microscopy and may play an important role in aquatic gas exchange. The vascularization of the oropharyngeal papillae in S. odoratus is then compared with that in Emys orbicularis, an aquatic emydid with similar ecology but lacking the ability of underwater respiration. Oropharyngeal papillae responsible for aquatic respiration are also found in soft‐shelled turtles (Trionychidae), the putative sister group of the kinosternids. This trait could therefore represent a shared, ancestral character of both groups involving advantages in the aquatic environment they inhabit. Anat Rec 293:1416–1424, 2010.


Journal of Morphology | 2011

Oropharyngeal Morphology in the Basal Tortoise Manouria emys emys With Comments on Form and Function of the Testudinid Tongue

Egon Heiss; Nikolay Natchev; Thomas Schwaha; Dietmar Salaberger; Patrick Lemell; Christian Beisser; Josef Weisgram

In tetrapods, the ability to ingest food on land is based on certain morphological features of the oropharynx in general and the feeding apparatus in particular. Recent paleoecological studies imply that terrestrial feeding has evolved secondarily in turtles, so they had to meet the morphological oropharyngeal requirements independently to other amniotes. This study is designed to improve our limited knowledge about the oropharyngeal morphology of tortoises by analyzing in detail the oropharynx in Manouria emys emys. Special emphasis is placed on the form and function of the tongue. Even if Manouria is considered a basal member of the only terrestrial turtle clade and was hypothesized to have retained some features reflecting an aquatic ancestry, Manouria shows oropharyngeal characteristics found in more derived testudinids. Accordingly, the oropharyngeal cavity in Manouria is richly structured and the glands are large and complexly organized. The tongue is large and fleshy and bears numerous slender papillae lacking lingual muscles. The hyolingual skeleton is mainly cartilaginous, and the enlarged anterior elements support the tongue and provide insertion sides for the well‐developed lingual muscles, which show striking differences to other reptiles. We conclude that the oropharyngeal design in Manouria differs clearly from semiaquatic and aquatic turtles, as well as from other reptilian sauropsids. J. Morphol., 2011.


PeerJ | 2015

Feeding behaviour in a ‘basal’ tortoise provides insights on the transitional feeding mode at the dawn of modern land turtle evolution

Nikolay Natchev; Nikolay Tzankov; Ingmar Werneburg; Egon Heiss

Almost all extant testudinids are highly associated with terrestrial habitats and the few tortoises with high affinity to aquatic environments are found within the genus Manouria. Manouria belongs to a clade which forms a sister taxon to all remaining tortoises and is suitable as a model for studying evolutionary transitions within modern turtles. We analysed the feeding behaviour of Manouria emys and due to its phylogenetic position, we hypothesise that the species might have retained some ancestral features associated with an aquatic lifestyle. We tested whether M. emys is able to feed both in aquatic and terrestrial environments. In fact, M. emys repetitively tried to reach submerged food items in water, but always failed to grasp them—no suction feeding mechanism was applied. When feeding on land, M. emys showed another peculiar behaviour; it grasped food items by its jaws—a behaviour typical for aquatic or semiaquatic turtles—and not by the tongue as generally accepted as the typical feeding mode in all tortoises studied so far. In M. emys, the hyolingual complex remained retracted during all food uptake sequences, but the food transport was entirely lingual based. The kinematical profiles significantly differed from those described for other tortoises and from those proposed from the general models on the function of the feeding systems in lower tetrapods. We conclude that the feeding behaviour of M. emys might reflect a remnant of the primordial condition expected in the aquatic ancestor of the tortoises.


PeerJ | 2016

Contributions to the functional morphology of caudate skulls: kinetic and akinetic forms

Nikolay Natchev; Stephan Handschuh; Simeon Lukanov; Nikolay Tzankov; Borislav Naumov; Ingmar Werneburg

A strongly ossified and rigid skull roof, which prevents parietal kinesis, has been reported for the adults of all amphibian clades. Our μ-CT investigations revealed that the Buresch’s newt (Triturus ivanbureschi) possess a peculiar cranial construction. In addition to the typical amphibian pleurokinetic articulation between skull roof and palatoquadrate associated structures, we found flexible connections between nasals and frontals (prokinesis), vomer and parasphenoid (palatokinesis), and between frontals and parietals (mesokinesis). This is the first description of mesokinesis in urodelans. The construction of the skull in the Buresch’s newts also indicates the presence of an articulation between parietals and the exocipitals, discussed as a possible kind of metakinesis. The specific combination of pleuro-, pro-, meso-, palato-, and metakinetic skull articulations indicate to a new kind of kinetic systems unknown for urodelans to this date. We discuss the possible neotenic origin of the skull kinesis and pose the hypothesis that the kinesis in T. ivanbureschi increases the efficiency of fast jaw closure. For that, we compared the construction of the skull in T. ivanbureschi to the akinetic skull of the Common fire salamander Salamandra salamandra. We hypothesize that the design of the skull in the purely terrestrial living salamander shows a similar degree of intracranial mobility. However, this mobility is permitted by elasticity of some bones and not by true articulation between them. We comment on the possible relation between the skull construction and the form of prey shaking mechanism that the species apply to immobilize their victims.


Zoology | 2016

On the amphibious food uptake and prey manipulation behavior in the Balkan-Anatolian crested newt (Triturus ivanbureschi, Arntzen and Wielstra, 2013).

Simeon Lukanov; Nikolay Tzankov; Stephan Handschuh; Egon Heiss; Borislav Naumov; Nikolay Natchev

Feeding behavior in salamanders undergoing seasonal habitat shifts poses substantial challenges caused by differences in the physical properties of air and water. Adapting to these specific environments, urodelans use suction feeding predominantly under water as opposed to lingual food prehension on land. This study aims to determine the functionality of aquatic and terrestrial feeding behavior in the Balkan-Anatolian crested newt (Triturus ivanbureschi) in its terrestrial stage. During the terrestrial stage, these newts feed frequently in water where they use hydrodynamic mechanisms for prey capture. On land, prey apprehension is accomplished mainly by lingual prehension, while jaw prehension seems to be the exception (16.67%) in all terrestrial prey capture events. In jaw prehension events there was no detectable depression of the hyo-lingual complex. The success of terrestrial prey capture was significantly higher when T. ivanbureschi used lingual prehension. In addition to prey capture, we studied the mechanisms involved in the subduction of prey. In both media, the newts frequently used a shaking behavior to immobilize the captured earthworms. Apparently, prey shaking constitutes a significant element in the feeding behavior of T. ivanbureschi. Prey immobilization was applied more frequently during underwater feeding, which necessitates a discussion of the influence of the feeding media on food manipulation. We also investigated the osteology of the cranio-cervical complex in T. ivanbureschi to compare it to that of the predominantly terrestrial salamandrid Salamandra salamandra.


Biotechnology & Biotechnological Equipment | 2009

Kinematical Analysis of Animal Behaviour: The Challenge to Increase the Frame Rate in Digital High-Speed Cinematography

Nikolay Natchev; Egon Heiss; Patrick Lemell; Stefan Kummer; T. Schwacha; Josef Weisgram

ABSTRACT Modern digital high-speed film systems are able to capture sequences by extremely high frame rates—over 100 000 fr/s. The equipment costs for such systems are high but the operational costs are practically zero. An important advantage of digital versus analogue high-speed films is the possibility to automatically “digitize” defined markers. The contrast and brightness of the sequences can be modulated in wide ranges; even at very high frame rates, a film can therefore be shot at relatively low light intensity. The construction and sensitivity of modern charge-coupled device (CCD) detectors allow filming with relatively high resolution at over 10 000 fr/s. The only remaining limiting factor for increasing the frame rate is the light level to which the animals are tolerant and still behave “normally” during the experiments. The present study uses film sequences from feeding events and defensive responses in animals, but also films of pistol shots, to demonstrate that choosing an adequate frame rate is crucial for any kinematical analysis.

Collaboration


Dive into the Nikolay Natchev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikolay Tzankov

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Borislav Naumov

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simeon Lukanov

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yurii Kornilev

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge