Nikolay S. Shelud'ko
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nikolay S. Shelud'ko.
Comparative Biochemistry and Physiology B | 2002
Nikolay S. Shelud'ko; K.F. Tuturova; T.V. Permyakova; O Tyurina; Galina G. Matusovskaya; Oleg S. Matusovsky
Myorod (MR), a new thick filament protein of molluscan smooth muscles, is an alternatively spliced product of the myosin (Mn) heavy chain gene. We studied digestion of MR and Mn from the posterior adductor of Crenomytilus grayanus and the outer portion of adductor of Mizuchopecten (Patinopecten) yessoensis by papain and constructed the proteolytic substructure of MR, that is an analogue to Mn substructure. There are a head domain (analogue of Mn S1) and a rod domain (analogue of Mn rod); the junction between them is split at low ionic strength. The rod, in turn, consists of a neck domain (analogue of Mn S2) and a tail domain (identical to light meromyosin); the junction between them is split at high ionic strength. The localization and possible function of MR are discussed.
Biochimica et Biophysica Acta | 2010
Oleg S. Matusovsky; Nikolay S. Shelud'ko; Tatyana V. Permyakova; Magdalena Zukowska; Apolinary Sobieszek
We have shown previously that myorod, a molluscan thick filament protein of unknown function, is phosphorylated by vertebrate smooth myosin light chain kinase (MLCK) in N-terminal unique region. The aim of the present study was to clarify whether such phosphorylation may occur in molluscan muscles. We detected three kinases endogenous to molluscan catch muscle, namely, to the complex of surface thick filament proteins that consists of twitchin, myosin, and myorod. The first kinase was a protein kinase A because it was inhibited by a specific inhibitor; the second one was associated with twitchin and phosphorylated myorod at its N-terminal unique region independently of Ca(2+); and the third kinase was bound to myosin and phosphorylated myorod as well as myosin in the C-terminal part of both proteins. The myosin-associated kinase was inhibited by micromolar concentration of calcium ions. This enzyme could be separated from myosin by chromatography, whereas the kinase associated with twitchin could not be separated from twitchin. Since twitchin has a MLCK-like domain, it is possible that this domain was responsible for myorod phosphorylation. Phosphorylation of myorod within the twitchin-myosin-myorod complex increased the actin-activated Mg(2+)-ATPase activity of myosin. Taken together, these results indicate that phosphorylation of myorod by kinases associated with key proteins of catch contraction may contribute to the functional activity of myorod in molluscan smooth muscle.
Biochimica et Biophysica Acta | 2015
Ilya G. Vyatchin; Ulyana V. Shevchenko; Stanislav S. Lazarev; Oleg S. Matusovsky; Nikolay S. Shelud'ko
Muscles of bivalve molluscs have double calcium regulation--myosin-linked and actin-linked. While the mechanism of myosin-linked regulation is sufficiently studied, there is still no consensus on the mechanism of actin-linked regulation. Earlier we showed a high degree of Ca2+-sensitivity of thin filaments from the adductor muscle of the mussel Crenomytilus grayanus (Mytiloida). In order to elucidate the nature of this regulation, we isolated the fraction of minor proteins from the mussel thin filaments, which confers Ca2+-sensitivity to reconstituted actomyosin-tropomyosin. Proteins of this fraction, ABP-19, ABP-20, and ABP-28, were chromatographically purified and identified. According to the results of mass spectrometry and Western blot analysis, as well as by their functional properties, these mussel actin-binding proteins appeared to correspond to the troponin components from the skeletal muscles of vertebrates (TnC, TnI and TnT). The reconstituted mussel troponin complex confers to actomyosin-tropomyosin more than 80% Ca2+-sensitivity. The in vivo molar ratio of actin/tropomyosin/troponin was calculated to be 7:1:0.5, i.e., the content of troponin in mussel thin filaments is two times lower than in thin filaments of skeletal muscles of vertebrates. These data demonstrate that troponin-like regulation found in the catch muscle of the mussel C. grayanus is present at least in two suborders of bivalves: Pectinoida and Mytiloida.
Biochemistry | 2016
V. V. Sirenko; A. V. Dobrzhanskaya; Nikolay S. Shelud'ko; Yurii S. Borovikov
The goal of this work was to elucidate the mechanism of inhibition of the actin-activated ATPase of myosin subfragment-1 (S1) by the calponin-like protein from mussel bivalve muscle. The calponin-like protein (Cap) is a 40-kDa actin-binding protein from the bivalve muscle of the mussel Crenomytilus grayanus. Kinetic parameters Vmax and KATPase of actomyosin ATPase in the absence and the presence of Cap were determined to investigate the mechanism of inhibition. It was found that Cap mainly causes increase in KATPase value and to a lesser extent the decrease in Vmax, which indicates that it is most likely a competitive inhibitor of actomyosin ATPase. Analysis of Vmax and KATPase parameters in the presence of tropomyosin revealed that the latter is a noncompetitive inhibitor of the actomyosin ATPase.
Biochemical and Biophysical Research Communications | 2015
Nikolay S. Shelud'ko; Ilya G. Vyatchin; Stanislav S. Lazarev; Ulyana V. Shevchenko
In this study, we investigated hybrid and non-hybrid actomyosin models including key contractile proteins: actin, myosin, and tropomyosin. These proteins were isolated from the rabbit skeletal muscle and the catch muscle of the mussel Crenomytilus grayanus. Our results confirmed literature data on an unusual ability of bivalves tropomyosin to inhibit Mg-ATPase activity of skeletal muscle actomyosin. We have shown that the degree of inhibition depends on the environmental conditions and may vary within a wide range. The inhibitory effect of mussel tropomyosin was not detected in non-hybrid model (mussel myosin + mussel actin + mussel tropomyosin). This effect was revealed only in hybrid models containing mussel tropomyosin + rabbit (or mussel) actin + rabbit myosin. We assume that mussel and rabbit myosins have mismatched binding sites for actin. In addition, mussel tropomyosin interacting with actin is able to close the binding sites of rabbit myosin with actin, which leads to inhibition of Mg-ATPase activity.
Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2017
Oleg S. Matusovsky; Anna V. Dobrzhanskaya; Victoria V. Pankova; K. V. Kiselev; Ulyana V. Girich; Nikolay S. Shelud'ko
Calponin-like protein (CaP-40), a third major protein after actin and tropomyosin, has recently been identified by us in the Ca2+-regulated thin filaments of mussel Crenomytilus grayanus. It contains calponin homology domain, five calponin family repeats and possesses similar biochemical properties as vertebrate smooth muscle calponin. In this paper, we report a full-length cDNA sequence of CaP-40, study its expression pattern on mRNA and protein levels, evaluate CaP-40 post-translational modifications and perform protein-protein interaction analysis. The full-length sequence of CaP-40 consists of 398 amino acids and has high similarity to calponins among molluscan species. CaP-40 gene is widely expressed in mussel tissues, with the highest expression in adductor and mantle. Comparison of these data with protein content established by mass-spectrometry analysis revealed that the high mRNA content is mirrored by high protein levels for adductor smooth muscles. To provide unbiased insight into the function of CaP-40 and effect of its over-expression in adductor smooth muscle, we built protein-protein interaction network of identified Crenomytilus grayanus proteome. In addition, we showed that CaP-40 is subjected to post-translational N- and C-terminal acetylation at N127, G229 and G349 sites which potentially regulates its function in vivo.
Comparative Biochemistry and Physiology B | 2006
Nelly A. Odintsova; Vyacheslav Dyachuk; K. Kiselev; Nikolay S. Shelud'ko
Biochemical and Biophysical Research Communications | 2010
Stanislava V. Avrova; Nikolay S. Shelud'ko; Yurii S. Borovikov
Biophysical Journal | 2010
Oleg S. Matusovsky; Galina G. Matusovskaya; Apolinary Sobieszek; Nikolay S. Shelud'ko
Biochemical and Biophysical Research Communications | 2016
Nikolay S. Shelud'ko; Ulyana V. Girich; Stanislav S. Lazarev; Ilya G. Vyatchin