Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nilanjana Das is active.

Publication


Featured researches published by Nilanjana Das.


Biotechnology Research International | 2011

Microbial degradation of petroleum hydrocarbon contaminants: an overview.

Nilanjana Das; Preethy Chandran

One of the major environmental problems today is hydrocarbon contamination resulting from the activities related to the petrochemical industry. Accidental releases of petroleum products are of particular concern in the environment. Hydrocarbon components have been known to belong to the family of carcinogens and neurotoxic organic pollutants. Currently accepted disposal methods of incineration or burial insecure landfills can become prohibitively expensive when amounts of contaminants are large. Mechanical and chemical methods generally used to remove hydrocarbons from contaminated sites have limited effectiveness and can be expensive. Bioremediation is the promising technology for the treatment of these contaminated sites since it is cost-effective and will lead to complete mineralization. Bioremediation functions basically on biodegradation, which may refer to complete mineralization of organic contaminants into carbon dioxide, water, inorganic compounds, and cell protein or transformation of complex organic contaminants to other simpler organic compounds by biological agents like microorganisms. Many indigenous microorganisms in water and soil are capable of degrading hydrocarbon contaminants. This paper presents an updated overview of petroleum hydrocarbon degradation by microorganisms under different ecosystems.


Journal of Hazardous Materials | 2009

Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study.

R. Vimala; Nilanjana Das

Sorption capacity of oyster mushroom (Pleurotus platypus), button mushroom (Agaricus bisporus) and milky mushroom (Calocybe indica) were evaluated on biosorption of heavy metals, viz. cadmium (II) and lead (II) from aqueous solutions. The optimum sorption conditions were studied for each metal separately. The desired pH of the aqueous solution was found to be 6.0 for the removal of cadmium (II) and 5.0 for removal of lead (II) for all the mushrooms. The percent removal of both the metals was found to increase with the increase in biosorbent dosage and contact time. The fitness of the biosorption data for Langmuir and Freundlich adsorption models was investigated. It was found that biosorption of cadmium (II) and lead (II) ions onto the biomass of the three mushrooms were better suitable to Langmuir than Freundlich adsorption model. P. platypus showed the highest metal uptake potential for cadmium (q(max) 34.96 mg/g) whereas A. bisporus exhibited maximum potential for lead (q(max) 33.78 mg/g). Milky mushroom showed the lowest metal uptake capacity for both the metals. The present data confirms that mushrooms may be used as efficient biosorbent for the removal of cadmium (II) and lead (II) ions from aqueous solution.


Journal of Rare Earths | 2013

Recovery of rare earth metals through biosorption: An overview

Nilanjana Das; Devlina Das

Abstract Rare earth metals (REMs) are a series of 17 elements that have widespread and unique applications in high technology, power generation, communications, and defense industries. These resources are also pivotal to emergent sustainable energy and carbon alternative technologies. Recovery of REMs is interesting due to its high market prices along with various industrial applications. Conventional technologies, viz. precipitation, filtration, liquid-liquid extraction, solid-liquid extraction, ion exchange, super critical extraction, electrowinning, electrorefining, electroslag refining, etc., which have been developed for the recovery of REMs, are not economically attractive. Biosorption represents a biotechnological innovation as well as a cost effective excellent tool for the recovery of rare earth metals from aqueous solutions. A variety of biomaterials such as algae, fungi, bacteria, resin, activated carbon, etc., have been reported to serve as potential adsorbents for the recovery of REMs. The metal binding mechanisms, as well as the parameters influencing the uptake of rare earth metals and isotherm modeling are presented here. This article provides an overview of past achievements and current scenario of the biosorption studies carried out using some promising biosorbents which could serve as an economical means for recovering REMs. The experimental findings reported by different workers will provide insights into this research frontier.


Journal of Hazardous Materials | 2010

Kinetics, equilibrium and thermodynamic studies on biosorption of Ag(I) from aqueous solution by macrofungus Pleurotus platypus

Devlina Das; Nilanjana Das; Lazar Mathew

Reports are available on silver binding capacity of some microorganisms. However, reports on the equilibrium studies on biosorption of silver by macrofungi are seldom known. The present study was carried out in a batch system using dead biomass of macrofungus Pleurotus platypus for the sorption of Ag(I). P. platypus exhibited the highest silver uptake of 46.7 mg g(-1) of biomass at pH 6.0 in the presence of 200 mg L(-1) Ag(I) at 20°C. Kinetic studies based on fractional power, zero order, first order, pseudo-first order, Elovich, second order and pseudo-second order rate expressions have been carried out. The results showed a very good compliance with the pseudo-first order model. The experimental data were analyzed using two parameter isotherms (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Halsey), three parameter isotherms (Redlich-Peterson, Sips, Khan, Koble-Corrigan, Hill, Toth, Radke-Prausmitz, Jossens, Langmuir-Freundlich), four parameter isotherms (Weber-van Vliet, Fritz-Schlunder, Baudu) and five parameter isotherm (Fritz-Schlunder). Thermodynamic parameters of the biosorption (ΔG, ΔH and ΔS) were also determined. The present study confirmed that macrofungus P. platypus may be used as a cost effective efficient biosorbent for the removal of Ag(I) ions from aqueous solution.


Journal of Hazardous Materials | 2010

Combined effects of sugarcane bagasse extract and synthetic dyes on the growth and bioaccumulation properties of Pichia fermentans MTCC 189.

Devlina Das; D. Charumathi; Nilanjana Das

Bioaccumulation of synthetic dyes viz. Acid Blue 93, Direct Red 28 and Basic Violet 3 by growing cells of yeast, Pichia fermentans MTCC 189 was investigated in growth media prepared from sugarcane bagasse extract. The maximum dye bioaccumulation was determined at pH 5.0 for all the dyes tested. Two kinetic models viz. Noncompetitive and Uncompetitive models were tested in order to determine the toxic effects of dyes on the specific growth rate of P. fermentans MTCC 189. Basic Violet 3 was found to be more toxic than the other two dyes. The combined effects of sugarcane bagasse extract and initial Basic Violet 3 dye concentrations on the specific growth rate and dye bioaccumulation efficiency of P. fermentans MTCC 189 was investigated and optimized using Response Surface Methodology (RSM). A 2(2) full factorial central composite design was successfully used for analysis of results. The optimum combination predicted via RSM confirmed that P. fermentans MTCC 189 was capable of bioaccumulating Basic Violet 3 dye upto 69.8% in the medium containing 10 mg/L of dye and 24 g/L sugar extracted from sugarcane bagasse.


Journal of Rare Earths | 2014

Optimization of parameters for cerium(III) biosorption onto biowaste materials of animal and plant origin using 5-level Box-Behnken design: Equilibrium, kinetic, thermodynamic and regeneration studies

Jaya Sre Varsihini C; Devlina Das; Nilanjana Das

Abstract Response surface methodology (RSM) employing 5-level Box-Behnken design was used to optimize the biosorption of cerium(III) onto biowaste materials of animal and plant origin viz. prawn carapace (PC) and corn style (CS). Various process parameters viz. pH (A: 3.0–9.0), biomass dosage (B: 0.05–0.35 g/L), initial metal concentration (C: 50–350 mg/L), contact time (D: 2–6 h) and temperature (E: 20–60 °C) were chosen for optimization. A log transformation was suggested by the Box-Cox plot in the present case. A low p-value of


Journal of Environmental Sciences-china | 2011

Mechanism of Cd(II) adsorption by macrofungus Pleurotus platypus

R. Vimala; Nilanjana Das

The mechanism of Cd(II) uptake by the dead biomass of macrofungus Pleurotus platypus was investigated using different chemical and instrumental techniques. Sequential removal of cell wall components of the biosorbent revealed that structural polysaccharides play a predominant role in the biosorption of Cd(II). The adsorption kinetics fitted well with the pseudo second-order model suggested that the adsorption of Cd(II) on P platypus involved a chemisorption process. Transmission electron microscopy of the cadmium exposed biomass confirmed the deposition of the metal mainly in the cell wall. Fourier transform infrared spectroscopic analysis of the metal loaded biosorbent confirmed the participation of -OH, -NH and C-O-C groups in the uptake of Cd(II). Energy dispersive X-ray analysis of the biosorbent before and after metal uptake revealed that the main mechanism of adsorption was ion-exchange. The effectiveness of CaCl2 in the desorption of cadmium perhaps suggested the exchange of Ca2+ with Cd(II).


Bioremediation Journal | 2012

Role of Sophorolipid Biosurfactant in Degradation of Diesel Oil by Candida tropicalis

Preethy Chandran; Nilanjana Das

ABSTRACT The yeast Candida tropicalis, isolated from petroleum-contaminated soil in India, was found to be the potent producer of biosurfactant in mineral salt media containing diesel oil as the carbon source and found to be an efficient degrader of diesel oil (98%) over a period of 10 days. The crude biosurfactant decreased the surface tension of cell-free broth, 78 to 30 mN/m, with a large oil displacement area and highly positive drop collapse test. The crude biosurfactant was purified using silica gel column chromatography followed by dialysis. With the use of Fourier transform infrared (FT-IR) spectroscopy, in combination with gas chromatography–mass spectrometry (GC-MS) analysis, chemical structures of the purified biosurfactant was identified as sophorolipid species. Involvement of biosurfactant in physiological mechanism of diesel adsorption on yeast cell surface was characterized based on zeta potential. When diesel oil was emulsified with biosurfactant, the surface charge of the diesel was modified, resulting in more adsorption of diesel on yeast cell surface. Biosurfactant production by yeast species was monitored using scanning electron microscopy (SEM) analysis and found that yeast species could form thick mat of mucilaginous biosurfactant that could interconnect the individual cells. Uptake of diesel oil by C. tropicalis was elucidated through transmission electron microscopy (TEM) analysis. Interestingly, it was observed that internalization of diesel oil droplet was taking place, suggesting a mechanism similar in appearance to active pinocytosis.


Environmental Technology | 2012

Role of plasmid in diesel oil degradation by yeast species isolated from petroleum hydrocarbon-contaminated soil

Preethy Chandran; Nilanjana Das

Five yeast species, namely Candida tropicalis, Cryptococcus laurentii, Trichosporon asahii, Rhodotorula mucilaginosa and Candida rugosa isolated from hydrocarbon-contaminated soil were found to be potent degraders of diesel oil. These microorganisms showed the presence of enzymes cytochrome P450, NADPH cytochrome c reductase, aminopyrine N demethylase, alcohol dehydrogenase, aldehyde dehydrogenase, naphthalene dioxygenase, catalase and glutathione S transferase when the cells were incubated for 48 h in Bushnell Haas medium supplemented with 2% diesel oil as the sole source of carbon. The cytochrome P450 monooxygenase enzyme system was found to play an important role in diesel oil degradation. A plasmid approximately 12 kb in size was found to be harboured by all the yeast species. The role of the plasmid on diesel oil degradation was assessed by biomass inhibition studies, which confirmed that the metabolic machinery of yeast species for diesel oil degradation was plasmid coded. This is the first report establishing the involvement of a plasmid in diesel oil degradation by yeast species.


Iranian Journal of Environmental Health Science & Engineering | 2014

Removal of Zn(II) from electroplating effluent using yeast biofilm formed on gravels: batch and column studies

Geetanjali Basak; Lakshmi; Preethy Chandran; Nilanjana Das

BackgroundPresent study deals with the removal of Zn(II) ions from effluent using yeast biofilm formed on gravels.MethodsThe biofilm forming ability of Candida rugosa and Cryptococcus laurentii was evaluated using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay and monitored by scanning electron microscopy (SEM), and Confocal laser scanning microscopy (CLSM). Copious amount of extracellular polymeric substances (EPS) produced by yeast species was quantified and characterized by Fourier transform infrared spectroscopy (FT-IR).ResultsYeast biofilm formed on gravels by C. rugosa and C. laurentii showed 88% and 74.2% removal of Zn(II) ions respectively in batch mode. In column mode, removal of Zn(II) ions from real effluent was found to be 95.29% by C. rugosa biofilm formed on gravels.ConclusionThe results of the present study showed that there is a scope to develop a cost effective method for the efficient removal of Zn(II) from effluent using gravels coated with yeast biofilm.

Collaboration


Dive into the Nilanjana Das's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge