Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niloy Bhattacharjee is active.

Publication


Featured researches published by Niloy Bhattacharjee.


European Journal of Pharmacology | 2016

Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update.

Niloy Bhattacharjee; Sujata Barma; Nandita Konwar; Saikat Dewanjee; Prasenjit Manna

Diabetic nephropathy (DN), a chronic complication of diabetes, is charecterized by glomerular hypertrophy, proteinuria, decreased glomerular filtration, and renal fibrosis resulting in the loss of renal function. Although the exact cause of DN remains unclear, several mechanisms have been postulated, such as hyperglycemia-induced renal hyper filtration and renal injury, AGEs-induced increased oxidative stress, activated PKC-induced increased production of cytokines, chemokines, and different inflammatory and apoptotic signals. Among various factors, oxidative stress has been suggested to play a major role underlying the onset and propagation of DN. It triggers several signaling pathways involved in DN, like AGEs, PKC cascade, JAK/STAT signaling, MAPK, mTOR, and SMAD. Oxidative stress-induced activation of both inflammatory and apoptotic signals are two major problems in the pathogenesis of DN. The FDA approved pharmacotherapeutic agents affecting against polyol pathway principally include anti-oxidants, like α-lipoic acid, vitamin E, and vitamin C. Kremezin and benfotiamine are the FDA approved AGEs inhibitors, another therapeutic target against DN. Ruboxistaurin, telmizartan, rapamycin, fenofibrate, aliskiren, and manidipine are some FDA approved pharmacotherapeutics effective against DN via diverse mechanisms. Beside this, some therapeutic agents are still waiting for FDA approval and few drugs without FDA approval are also prescribed in some countries for the management of DN. Despite the medications available in the market to treat DN, the involvement of multiple mechanisms makes it difficult to choose an optimum therapeutic agent. Therefore, much research is required to find out new therapeutic agent/strategies for an adequate pharmacotherapy of DN.


PLOS ONE | 2015

Water Spinach, Ipomoea aquatica (Convolvulaceae), Ameliorates Lead Toxicity by Inhibiting Oxidative Stress and Apoptosis

Saikat Dewanjee; Tarun K. Dua; Ritu Khanra; Shilpa Das; Sujata Barma; Swarnalata Joardar; Niloy Bhattacharjee; Muhammad Zia-Ul-Haq; Hawa Z. E. Jaafar

Background Ipomoea aquatica (Convolvulaceae), an aquatic edible plant, is traditionally used against heavy metal toxicity in India. The current study intended to explore the protective role of edible (aqueous) extract of I. aquatica (AEIA) against experimentally induced Pb-intoxication. Methods The cytoprotective role of AEIA was measured on mouse hepatocytes by cell viability assay followed by Hoechst staining and flow cytometric assay. The effect on ROS production, lipid peroxidation, protein carbonylation, intracellular redox status were measured after incubating the hepatocytes with Pb-acetate (6.8 μM) along with AEIA (400 μg/ml). The effects on the expressions of apoptotic signal proteins were estimated by western blotting. The protective role of AEIA was measured by in vivo assay in mice. Haematological, serum biochemical, tissue redox status, Pb bioaccumulation and histological parameters were evaluated to estimate the protective role of AEIA (100 mg/kg) against Pb-acetate (5 mg/kg) intoxication. Results Pb-acetate treated hepatocytes showed a gradual reduction of cell viability dose-dependently with an IC50 value of 6.8 μM. Pb-acetate treated hepatocytes exhibited significantly enhanced levels (p < 0.01) of ROS production, lipid peroxidation, protein carbonylation with concomitant depletion (p < 0.01) of antioxidant enzymes and GSH. However, AEIA treatment could significantly restore the aforementioned parameters in murine hepatocytes near to normalcy. Besides, AEIA significantly reversed (p < 0.05–0.01) the alterations of transcription levels of apoptotic proteins viz. Bcl 2, Bad, Cyt C, Apaf-1, cleaved caspases [caspase 3, caspase 8 and caspase 9], Fas and Bid. In in vivo bioassay, Pb-acetate treatment caused significantly high intracellular Pb burden and oxidative pressure in the kidney, liver, heart, brain and testes in mice. In addition, the haematological and serum biochemical factors were changed significantly in Pb-acetate-treated animals. AEIA treatment restored significantly the evaluated-parameters to the near-normal position. Conclusion The extract may offer the protective effect via counteracting with Pb mediated oxidative stress and/or promoting the elimination of Pb by chelating. The presence of substantial quantities of flavonoids, phenolics and saponins would be responsible for the overall protective effect.


PLOS ONE | 2016

Sansevieria roxburghiana Schult. & Schult. F. (Family: Asparagaceae) Attenuates Type 2 Diabetes and Its Associated Cardiomyopathy

Niloy Bhattacharjee; Ritu Khanra; Tarun K. Dua; Susmita Das; Bratati De; Muhammad Zia-Ul-Haq; Vincenzo De Feo; Saikat Dewanjee

Background Sansevieria roxburghiana Schult. & Schult. F. (Family: Asparagaceae) rhizome has been claimed to possess antidiabetic activity in the ethno-medicinal literature in India. Therefore, present experiments were carried out to explore the protective role of edible (aqueous) extract of S. roxburghiana rhizome (SR) against experimentally induced type 2 diabetes mellitus (T2DM) and its associated cardiomyopathy in Wistar rats. Methods SR was chemically characterized by GC-MS analysis. Antidiabetic activity of SR (50 and 100 mg/kg, orally) was measured in high fat diets (ad libitum) + low-single dose of streptozotocin (35 mg/kg, intraperitoneal) induced type 2 diabetic (T2D) rat. Fasting blood glucose level was measured at specific intermissions. Serum biochemical and inflammatory markers were estimated after sacrificing the animals. Besides, myocardial redox status, expressions of signal proteins (NF-κB and PKCs), histological and ultrastructural studies of heart were performed in the controls and SR treated T2D rats. Results Phytochemical screening of the crude extract revealed the presence of phenolic compounds, sugar alcohols, sterols, amino acids, saturated fatty acids within SR. T2D rats exhibited significantly (p < 0.01) higher fasting blood glucose level with respect to control. Alteration in serum lipid profile (p < 0.01) and increased levels of lactate dehydrogenase (p < 0.01) and creatine kinase (p < 0.01) in the sera revealed the occurrence of hyperlipidemia and cell destruction in T2D rats. T2DM caused significant (p < 0.05–0.01) alteration in the biochemical markers in the sera. T2DM altered the redox status (p < 0.05–0.01), decreased (p < 0.01) the intracellular NAD and ATP concentrations in the myocardial tissues of experimental rats. While investigating the molecular mechanism, activation PKC isoforms was observed in the selected tissues. T2D rats also exhibited an up-regulation in nuclear NF-κB (p65) in the cardiac tissues. So, oral administration of SR (50 and 500 mg/kg) could reduce hyperglycemia, hyperlipidemia, membrane disintegration, oxidative stress, vascular inflammation and prevented the activation of oxidative stress induced signaling cascades leading to cell death. Histological and ultra-structural studies of cardiac tissues supported the protective characteristics of SR. Conclusions From the present findings it can be concluded that, SR could offer protection against T2DM and its associated cardio-toxicity via multiple mechanisms viz. hypoglycemic, antioxidant and anti-inflammatory actions.


Biomedicine & Pharmacotherapy | 2017

Taraxerol, a pentacyclic triterpenoid, from Abroma augusta leaf attenuates diabetic nephropathy in type 2 diabetic rats

Ritu Khanra; Niloy Bhattacharjee; Tarun K. Dua; Ashis Nandy; Achintya Saha; Jatin Kalita; Prasenjit Manna; Saikat Dewanjee

Persistent hyperglycaemia coupled with inflammation plays an important role in the pathogenesis of diabetic nephropathy (DN). Present study examined the therapeutic potential of taraxerol isolated from the methanol extract of Abroma augusta leaf against DN using rodent model of type 2 diabetes (T2D). T2D was experimentally induced by high fat diet and a single low-single dose of streptozotocin (35mg/kg, i.p.). Accumulation of serum creatinine, urea, and uric acid, activation of lactate dehydrogenase and creatinin kinase, and release of urinary albumin represented the glomerular damage and the progression of nephropathy in T2D rats. Taraxerol (20mg/kg, p.o.) treatment significantly reinstated the aforementioned changes in biochemical parameters near to normalcy. Molecular mechanism studies demonstrated an impaired signaling cascade, IRS1/PI3K/Akt/AMPK/GLUT4/GSK3β, of glucose metabolism in the skeletal muscle and increase in serum levels of pro-inflammatory cytokines, CRP and MCP1 in T2D rats. Activation of polyol pathway, enhanced production of AGEs, up-regulation of NF-κB/PKCs/PARP signaling, and renal fibrosis was also observed in T2D rats. Taraxerol (20mg/kg, p.o.) treatment stimulated glucose metabolism in skeletal muscle, regulated blood glycaemic status and lipid profile in the sera, reduced the secretion of pro-inflammatory cytokines, and restored the renal physiology in T2D rats. Histological assessments were also in agreement with the above findings. Molecular docking study again supported the probable interactions of taraxerol with PKCβ, PKCδ, NF-κB, PARP, PI3K, IRS, Akt and AMPK. In silico ADME study predicted the drug-likeness character of taraxerol. Results suggest a possibility of taraxerol to be a new therapeutic agent for DN in future.


Molecules | 2017

Natural Products as Alternative Choices for P-Glycoprotein (P-gp) Inhibition

Saikat Dewanjee; Tarun K. Dua; Niloy Bhattacharjee; Anup Kumar Das; Moumita Gangopadhyay; Ritu Khanra; Swarnalata Joardar; Muhammad Riaz; Vincenzo De Feo; Muhammad Zia-Ul-Haq

Multidrug resistance (MDR) is regarded as one of the bottlenecks of successful clinical treatment for numerous chemotherapeutic agents. Multiple key regulators are alleged to be responsible for MDR and making the treatment regimens ineffective. In this review, we discuss MDR in relation to P-glycoprotein (P-gp) and its down-regulation by natural bioactive molecules. P-gp, a unique ATP-dependent membrane transport protein, is one of those key regulators which are present in the lining of the colon, endothelial cells of the blood brain barrier (BBB), bile duct, adrenal gland, kidney tubules, small intestine, pancreatic ducts and in many other tissues like heart, lungs, spleen, skeletal muscles, etc. Due to its diverse tissue distribution, P-gp is a novel protective barrier to stop the intake of xenobiotics into the human body. Over-expression of P-gp leads to decreased intracellular accretion of many chemotherapeutic agents thus assisting in the development of MDR. Eventually, the effectiveness of these drugs is decreased. P-gp inhibitors act by altering intracellular ATP levels which are the source of energy and/or by affecting membrane contours to increase permeability. However, the use of synthetic inhibitors is known to cause serious toxicities. For this reason, the search for more potent and less toxic P-gp inhibitors of natural origin is underway. The present review aims to recapitulate the research findings on bioactive constituents of natural origin with P-gp inhibition characteristics. Natural bioactive constituents with P-gp modulating effects offer great potential for semi-synthetic modification to produce new scaffolds which could serve as valuable investigative tools to recognize the function of complex ABC transporters apart from evading the systemic toxicities shown by synthetic counterparts. Despite the many published scientific findings encompassing P-gp inhibitors, however, this article stand alones because it provides a vivid picture to the readers pertaining to Pgp inhibitors obtained from natural sources coupled with their mode of action and structures. It provides first-hand information to the scientists working in the field of drug discovery to further synthesise and discover new P-gp inhibitors with less toxicity and more efficacies.


Frontiers in Pharmacology | 2017

Protocatechuic Acid, a Phenolic from Sansevieria roxburghiana Leaves, Suppresses Diabetic Cardiomyopathy via Stimulating Glucose Metabolism, Ameliorating Oxidative Stress, and Inhibiting Inflammation

Niloy Bhattacharjee; Tarun K. Dua; Ritu Khanra; Swarnalata Joardar; Ashis Nandy; Achintya Saha; Vincenzo De Feo; Saikat Dewanjee

Persistent hyperglycemia, impairment of redox status and establishment of inflammatory pathophysiology integrally play important role in the pathogenesis of diabetic cardiomyopathy (DC). Present study examined the therapeutic potential of protocatechuic acid isolated from the Sansevieria roxburghiana rhizomes against DC employing rodent model of type 2 diabetes (T2D). T2D was induced by high fat diet + a low-single dose of streptozotocin (35 mg/kg, i.p.). T2D rats exhibited significantly (p < 0.01) high fasting blood glucose level. Alteration in serum lipid profile (p < 0.01) and increased levels of lactate dehydrogenase (p < 0.01) and creatine kinase (p < 0.01) in the sera of T2D rats revealed the occurrence of hyperlipidemia and diabetic pathophysiology. A significantly (p < 0.01) high levels of serum C-reactive protein and pro-inflammatory mediators revealed the establishment of inflammatory occurrence in T2D rats. Besides, significantly high levels of troponins in the sera revealed the establishment of cardiac dysfunctions in T2D rats. However, protocatechuic acid (50 and 100 mg/kg, p.o.) treatment could significantly reverse the changes in serum biochemical parameters related to cardiac dysfunctions. Molecular mechanism studies demonstrated impairment of signaling cascade, IRS1/PI3K/Akt/AMPK/p 38/GLUT4, in glucose metabolism in the skeletal muscle of T2D rats. Significant (p < 0.01) activation of polyol pathway, enhanced production of AGEs, oxidative stress and up-regulation of inflammatory signaling cascades (PKC/NF-κB/PARP) were observed in the myocardial tissue of T2D rats. However, protocatechuic acid (50 and 100 mg/kg, p.o.) treatment could significantly (p < 0.05–0.01) stimulate glucose metabolism in skeletal muscle, regulated glycemic and lipid status, reduced the secretion of pro-inflammatory cytokines, and restored the myocardial physiology in T2D rats near to normalcy. Histological assessments were also in agreement with the above findings. In silico molecular docking study again supported the interactions of protocatechuic acid with different signaling molecules, PI3K, IRS, Akt, AMPK PKC, NF-κB and PARP, involved in glucose utilization and inflammatory pathophysiology. In silico ADME study predicted that protocatechuic acid would support the drug-likeness character. Combining all, results would suggest a possibility of protocatechuic acid to be a new therapeutic agent for DC in future.


Biomedicine & Pharmacotherapy | 2017

Taraxerol, a pentacyclic triterpene from Abroma augusta leaf, attenuates acute inflammation via inhibition of NF-κB signaling

Ritu Khanra; Saikat Dewanjee; Tarun K. Dua; Niloy Bhattacharjee

Abroma augusta L. (Malvaceae) leaf is traditionally used to treat inflammatory disorders. In our laboratory, we have scientifically validated the anti-inflammatory effect of A. augusta leaf extract. In this study, it has been aimed to evaluate in vivo anti-inflammatory effect of taraxerol isolated from the methanol extract of A. augusta leaf. It was further intended to find out the probable mechanism of anti-inflammatory effect of taraxerol. The anti-inflammatory effect of taraxerol (5 and 10mg/kg, i.p.) was measured employing carrageenan-induced paw edema model of acute inflammation. The carrageenan injection resulted significant edema formation in the right paw when compared with un-injected left paw. However, taraxerol (10mg/kg) treatment could significantly (p<0.05-0.01) attenuate carrageenan induced paw edema 2h onward. The effect of taraxerol at the dose of 5mg/kg was found to be significant (p<0.05) only after 4h of carrageenan treatment. Taraxerol (10mg/kg) treatment could significantly (p<0.01) attenuate carrageenan mediated up-regulation in the levels of IL 1β, IL 6, IL 12 and TNF α in the right paw tissues. In search of molecular mechanism, taraxerol (10mg/kg) could significantly (p<0.05-0.01) reinstate carrageenan provoked NF-κB signaling and thereby caused significant down-regulation in the expressions of COX-2 (p<0.01) and iNOS (p<0.05). In conclusion, taraxerol would attenuate acute inflammation via inhibition of NF-κB signaling.


Oxidative Medicine and Cellular Longevity | 2018

Carnosic Acid, a Natural Diterpene, Attenuates Arsenic-Induced Hepatotoxicity via Reducing Oxidative Stress, MAPK Activation, and Apoptotic Cell Death Pathway

Sonjit Das; Swarnalata Joardar; Prasenjit Manna; Tarun K. Dua; Niloy Bhattacharjee; Ritu Khanra; Shovonlal Bhowmick; Jatin Kalita; Achintya Saha; Supratim Ray; Vincenzo De Feo; Saikat Dewanjee

The present studies have been executed to explore the protective mechanism of carnosic acid (CA) against NaAsO2-induced hepatic injury. CA exhibited a concentration dependent (1–4 μM) increase in cell viability against NaAsO2 (12 μM) in murine hepatocytes. NaAsO2 treatment significantly enhanced the ROS-mediated oxidative stress in the hepatic cells both in in vitro and in vivo systems. Significant activation of MAPK, NF-κB, p53, and intrinsic and extrinsic apoptotic signaling was observed in NaAsO2-exposed hepatic cells. CA could significantly counteract with redox stress and ROS-mediated signaling and thereby attenuated NaAsO2-mediated hepatotoxicity. NaAsO2 (10 mg/kg) treatment caused significant increment in the As bioaccumulation, cytosolic ATP level, DNA fragmentation, and oxidation in the liver of experimental mice (n = 6). The serum biochemical and haematological parameters were significantly altered in the NaAsO2-exposed mice (n = 6). Simultaneous treatment with CA (10 and 20 mg/kg) could significantly reinstate the NaAsO2-mediated toxicological effects in the liver. Molecular docking and dynamics predicted the possible interaction patterns and the stability of interactions between CA and signal proteins. ADME prediction anticipated the drug-likeness characteristics of CA. Hence, there would be an option to employ CA as a new therapeutic agent against As-mediated toxic manifestations in future.


European Journal of Pharmacology | 2018

Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets

Saikat Dewanjee; Sonjit Das; Anup Kumar Das; Niloy Bhattacharjee; Anjum Dihingia; Tarun K. Dua; Jatin Kalita; Prasenjit Manna

Abstract Diabetic neuropathy is regarded as one of the most debilitating outcomes of diabetes mellitus and may cause pain, decreased motility, and even amputation. Diabetic neuropathy includes multiple forms, ranging from discomfort to death. Prognosis of diabetic neuropathy is an uphill task as it remains silent for several years after the onset of diabetes. Hyperglycemia, apart from inducing oxidative stress in neurons, also leads to activation of multiple biochemical pathways which constitute the major source of damage and are potential therapeutic targets in diabetic neuropathy. A vast array of molecular pathways, including polyol pathway, hexosamine pathway, PKCs signaling, oxidative stress, AGEs pathway, PARP pathway, MAPK pathway, NF‐&kgr;B signaling, hedgehog pathways, TNF‐&agr; signaling, cyclooxygenase pathway, interleukins, lipoxygenase pathway, nerve growth factor, Wnt pathway, autophagy, and GSK3 signaling may be accounted for the pathogenesis and progression of diabetic neuropathy. Although symptomatic treatment is available for diabetic neuropathy, few treatment options are available to eliminate the root cause. The immense physical, psychological, and economic burden of diabetic neuropathy highlights the need for cost effective and targeted therapies. The main aim of this review is to highlight the putative role of various mechanisms and pathways involved in the development of diabetic neuropathy and to impart an in‐depth insight on new therapeutic approaches aimed at delaying or reversing various modalities of diabetic neuropathy.


Biochemical Pharmacology | 2018

MicroRNA: A new generation therapeutic target in diabetic nephropathy

Saikat Dewanjee; Niloy Bhattacharjee

Graphical abstract Figure. No caption available. &NA; Diabetic nephropathy (DN) is one of the most prevalent lethal complications of diabetes that leads to end stage renal disease. Although several clinical approaches exist to attenuate DN, there is not curative treatment to date. DN is complicated, as it involves several simultaneous molecular pathways. Some natural and synthetic molecules have been reported to inhibit some specific pathogenic signal transduction in DN. However, the complications of DN still remain uncontrolled. MicroRNAs (miRNAs) are a class of non‐coding RNAs that can bind to the 3′UTR of their target mRNAs to participate in epigenetic regulation of their downstream signalling molecules. Therefore, miRNAs have a potential role in regulating the pathogenesis of several diseases. Recent studies have identified the roles of several miRNAs in the signalling cascade involved in DN pathophysiology. Therefore, miRNAs are an attractive therapeutic target in DN. However, further research is needed to identify the key miRNAs in DN and their specific functions at both the transcriptional and translational levels. This review aimed to provide current information for different miRNAs involved in DN and to provide the future probabilities of miRNA‐based therapies in DN.

Collaboration


Dive into the Niloy Bhattacharjee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prasenjit Manna

North East Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jatin Kalita

North East Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge