Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nils Muhlert is active.

Publication


Featured researches published by Nils Muhlert.


Journal of Neurology, Neurosurgery, and Psychiatry | 2012

Improved detection of cortical MS lesions with phase-sensitive inversion recovery MRI

Varun Sethi; Tarek A. Yousry; Nils Muhlert; M Ron; Xavier Golay; Claudia A. M. Wheeler-Kingshott; David H. Miller; Declan Chard

Objective Cortical grey matter lesions are common in multiple sclerosis (MS), but usually not seen on MRI. The authors compared the performance of double inversion recovery (DIR, currently considered the best available imaging sequence for detecting cortical lesions) with phase-sensitive inversion recovery (PSIR, a sequence allowing much higher resolution scans to be obtained in a clinically feasible time). Methods Sixty MS patients and 30 healthy controls underwent MRI scanning on a 3 Tesla scanner. The authors compared intracortical (IC) and leucocortical (LC) lesion counts obtained with a standard DIR sequence (1×1×3 mm resolution, obtained in 4 min) and a PSIR sequence (0.5×0.5×2 mm, 11 min). Lesions were marked separately on DIR and PSIR scans. Results In the whole MS cohort, more cortical lesions were seen on the higher-resolution PSIR than the DIR scans (IC mean±SD: 18.1±9.8 vs 5.9±4.5, p<0.001; LC mean±SD: 13.4±12.9 vs 7.3±8.0, p<0.001). On PSIR, ≥1 IC lesion was seen in 60/60 MS patients and 1/30 controls, and ≥1 LC lesion in 60/60 patients and 6/30 controls. On DIR, ≥1 IC lesion was seen in 50/60 patients and 0/30 controls, and ≥1 LC lesion(s) in 60/60 patients and 5/30 controls. Conclusions Compared with DIR, using PSIR the authors are able to detect a significantly greater number of cortical grey matter lesions. The presence of at least one IC lesion in every MS patient, but very few healthy controls, suggests that it may be a useful adjunct to conventional MRI when a diagnosis of MS is suspected but not confirmed.


Neuropsychologia | 2010

Accelerated forgetting of real-life events in Transient Epileptic Amnesia.

Nils Muhlert; Fraser Milton; Christopher R. Butler; Narinder Kapur; Adam Zeman

Transient Epileptic Amnesia (TEA) is a form of temporal lobe epilepsy associated with ictal and interictal memory disturbance. Some patients with TEA exhibit Accelerated Long-term Forgetting (ALF), in which memory for verbal and non-verbal material is retained normally over short delays but fades at an unusually rapid rate over days to weeks. This study addresses three questions about ALF in TEA: (i) whether real-life events undergo ALF in a similar fashion to laboratory-based stimuli; (ii) whether ALF can be detected within 24h; (iii) whether procedural memories are susceptible to ALF. Eleven patients with TEA and eleven matched healthy controls wore a novel, automatic camera, SenseCam, while visiting a local attraction. Memory for images of events was assessed on the same day and after delays of one day, one week, and three weeks. Forgetting of real-life events was compared with forgetting of a word list and with performance on a procedural memory task. On the day of their excursion, patients and controls recalled similar numbers of primary events, associated secondary details (contiguous events, thoughts and sensory information) and items from the word list. In contrast, patients showed ALF for primary events over three weeks, with ALF for contiguous events, thoughts and words over the first day. Retention on the procedural memory task was normal over three weeks. The results indicate that accelerated forgetting in TEA: (i) affects memory for real-life events as well as laboratory stimuli; (ii) is maximal over the first day; and (iii) is specific to declarative memories.


Brain | 2015

Loss of phosphodiesterase 10A expression is associated with progression and severity in Parkinson’s disease

Flavia Niccolini; Thomas Foltynie; Tiago Reis Marques; Nils Muhlert; Andri C. Tziortzi; Graham Searle; Sridhar Natesan; Shitij Kapur; Eugenii A. Rabiner; Roger N. Gunn; Paola Piccini; Marios Politis

The mechanisms underlying neurodegeneration and loss of dopaminergic signalling in Parkinsons disease are still only partially understood. Phosphodiesterase 10A (PDE10A) is a basal ganglia expressed dual substrate enzyme, which regulates cAMP and cGMP signalling cascades, thus having a key role in the regulation of dopaminergic signalling in striatal pathways, and in promoting neuronal survival. This study aimed to assess in vivo the availability of PDE10A in patients with Parkinsons disease using positron emission tomography molecular imaging with (11)C-IMA107, a highly selective PDE10A radioligand. We studied 24 patients with levodopa-treated, moderate to advanced Parkinsons disease. Their positron emission tomography imaging data were compared to those from a group of 12 healthy controls. Parametric images of (11)C-IMA107 binding potential relative to non-displaceable binding (BPND) were generated from the dynamic (11)C-IMA107 scans using the simplified reference tissue model with the cerebellum as the reference tissue. Corresponding region of interest analysis showed lower mean (11)C-IMA107 BPND in the caudate (P < 0.001), putamen (P < 0.001) and globus pallidus (P = 0.025) in patients with Parkinsons disease compared to healthy controls, which was confirmed with voxel-based analysis. Longer Parkinsons duration correlated with lower (11)C-IMA107 BPND in the caudate (r = -0.65; P = 0.005), putamen (r = -0.51; P = 0.025), and globus pallidus (r = -0.47; P = 0.030). Higher Unified Parkinsons Disease Rating Scale part-III motor scores correlated with lower (11)C-IMA107 BPND in the caudate (r = -0.54; P = 0.011), putamen (r = -0.48; P = 0.022), and globus pallidus (r = -0.70; P < 0.001). Higher Unified Dyskinesia Rating Scale scores in those Parkinsons disease with levodopa-induced dyskinesias (n = 12), correlated with lower (11)C-IMA107 BPND in the caudate (r = -0.73; P = 0.031) and putamen (r = -0.74; P = 0.031). Our findings demonstrate striatal and pallidal loss of PDE10A expression, which is associated with Parkinsons duration and severity of motor symptoms and complications. PDE10A is an enzyme that could be targeted with novel pharmacotherapy, and this may help improve dopaminergic signalling and striatal output, and therefore alleviate symptoms and complications of Parkinsons disease.


The Journal of Nuclear Medicine | 2014

In Vivo Assessment of Brain White Matter Inflammation in Multiple Sclerosis with 18 F-PBR111 PET

Alessandro Colasanti; Qi Guo; Nils Muhlert; Paolo Giannetti; Mayca Onega; Rexford D. Newbould; O Ciccarelli; Stuart Rison; Charlotte Thomas; Richard Nicholas; Paolo A. Muraro; Omar Malik; David R. Owen; Paola Piccini; Roger N. Gunn; Eugenii A. Rabiner; Paul M. Matthews

PET radioligand binding to the 18-kD translocator protein (TSPO) in the brains of patients with multiple sclerosis (MS) primarily reflects activated microglia and macrophages. We previously developed genetic stratification for accurate quantitative estimation of TSPO using second-generation PET radioligands. In this study, we used 18F-PBR111 PET and MR imaging to measure relative binding in the lesional, perilesional, and surrounding normal-appearing white matter of MS patients, as an index of the innate immune response. Methods: 18F-PBR111 binding was quantified in 11 MS patients and 11 age-matched healthy volunteers, stratified according to the rs6971 TSPO gene polymorphism. Fluid-attenuated inversion recovery and magnetization transfer ratio (MTR) MR imaging were used to segment the white matter in MS patients as lesions, perilesional volumes, nonlesional white matter with reduced MTR, and nonlesional white matter with normal MTR. Results: 18F-PBR111 binding was higher in the white matter lesions and perilesional volumes of MS patients than in white matter of healthy controls (P < 0.05). Although there was substantial heterogeneity in binding between different lesions, a within-subject analysis showed higher 18F-PBR111 binding in MS lesions (P < 0.05) and in perilesional (P < 0.05) and nonlesional white matter with reduced MTR (P < 0.005) than in nonlesional white matter with a normal MTR. A positive correlation was observed between the mean 18F-PBR111 volume of distribution increase in lesions relative to nonlesional white matter with a normal MTR and the MS severity score (Spearman ρ = 0.62, P < 0.05). Conclusion: This study demonstrates that quantitative TSPO PET with a second-generation radioligand can be used to characterize innate immune responses in MS in vivo and provides further evidence supporting an association between the white matter TSPO PET signal in lesions and disease severity. Our approach is practical for extension to studies of the role of the innate immune response in MS for differentiation of antiinflammatory effects of new medicines and their longer term impact on clinical outcome.


Neuropsychologia | 2011

Accelerated long-term forgetting in temporal lobe but not idiopathic generalised epilepsy

Nils Muhlert; R. A. Grunewald; Nicola M. Hunkin; M. Reuber; S. Howell; Hazel Reynders; Claire L. Isaac

Temporal lobe epilepsy (TLE) has been associated with the phenomenon of accelerated long-term forgetting (ALF), in which memories are retained normally over short delays but are then lost at an accelerated rate over days or weeks. The causes of ALF, and whether it represents a consolidation deficit distinct from the one associated with forgetting over short delays, remain unclear. In addition, methodological issues have made results of some previous studies difficult to interpret. This study used improved methodology to investigate the role of seizure activity in ALF. Forgetting was assessed in participants with TLE (who have involvement of temporal lobe structures) and idiopathic generalised epilepsy (IGE; in which seizures occur in the absence of identified structural pathology in the temporal lobes). Learning of novel stimuli was matched between patients with TLE, patients with IGE and healthy controls matched for age and IQ. Results indicated that the TLE group showed accelerated forgetting between 30-min and three-weeks, but not between 40-s and 30-min. In contrast, rates of forgetting did not differ between patients with IGE and controls. We conclude that (1) ALF can be demonstrated in TLE in the absence of methodological confounds; (2) ALF is unlikely to be related to the experience of epilepsy that does not involve the temporal lobes; (3) neither seizures during the three-week delay nor polytherapy was associated with ALF.


Brain | 2015

Altered PDE10A expression detectable early before symptomatic onset in Huntington’s disease

Flavia Niccolini; Salman Haider; Tiago Reis Marques; Nils Muhlert; Andri C. Tziortzi; Graham Searle; Sridhar Natesan; Paola Piccini; Shitij Kapur; Eugenii A. Rabiner; Roger N. Gunn; Sarah J. Tabrizi; Marios Politis

There is an urgent need for early biomarkers and novel disease-modifying therapies in Huntingtons disease. Huntingtons disease pathology involves the toxic effect of mutant huntingtin primarily in striatal medium spiny neurons, which highly express phosphodiesterase 10A (PDE10A). PDE10A hydrolyses cAMP/cGMP signalling cascades, thus having a key role in the regulation of striatal output, and in promoting neuronal survival. PDE10A could be a key therapeutic target in Huntingtons disease. Here, we used combined positron emission tomography (PET) and multimodal magnetic resonance imaging to assess PDE10A expression in vivo in a unique cohort of 12 early premanifest Huntingtons disease gene carriers with a mean estimated 90% probability of 25 years before the predicted onset of clinical symptoms. We show bidirectional changes in PDE10A expression in premanifest Huntingtons disease gene carriers, which are associated with the probability of symptomatic onset. PDE10A expression in early premanifest Huntingtons disease was decreased in striatum and pallidum and increased in motor thalamic nuclei, compared to a group of matched healthy controls. Connectivity-based analysis revealed prominent PDE10A decreases confined in the sensorimotor-striatum and in striatonigral and striatopallidal projecting segments. The ratio between higher PDE10A expression in motor thalamic nuclei and lower PDE10A expression in striatopallidal projecting striatum was the strongest correlate with higher probability of symptomatic conversion in early premanifest Huntingtons disease gene carriers. Our findings demonstrate in vivo, a novel and earliest pathophysiological mechanism underlying Huntingtons disease with direct implications for the development of new pharmacological treatments, which can promote neuronal survival and improve outcome in Huntingtons disease gene carriers.


Journal of Neurology, Neurosurgery, and Psychiatry | 2014

Memory in multiple sclerosis is linked to glutamate concentration in grey matter regions

Nils Muhlert; Matteo Atzori; E De Vita; David L. Thomas; Rs Samson; Claudia A. M. Wheeler-Kingshott; Jeroen J. G. Geurts; David Miller; Alan J. Thompson; O Ciccarelli

Objective Glutamate is the principal excitatory neurotransmitter and is involved in normal brain function. Cognitive impairment is common in multiple sclerosis (MS), and understanding its mechanisms is crucial for developing effective treatments. We used structural and metabolic brain imaging to test two hypotheses: (i) glutamate levels in grey matter regions are abnormal in MS, and (ii) patients show a relationship between glutamate concentration and memory performance. Methods Eighteen patients with relapsing-remitting MS and 17 healthy controls were cognitively assessed and underwent 1H-magnetic resonance spectroscopy at 3 T to assess glutamate levels in the hippocampus, thalamus, cingulate and parietal cortices. Regression models investigated the association between glutamate concentration and memory performance independently of magnetisation transfer ratio values and grey matter lesions withint he same regions, and whole-brain grey matter volume. Results Patients had worse visual and verbal memory than controls. A positive relationship between glutamate levels in the hippocampal, thalamic and cingulate regions and visuospatial memory was detected in patients, but not in healthy controls. Conclusions The relationship between memory and glutamate concentration, which is unique to MS patients, suggests the reliance of memory on glutamatergic systems in MS.


Human Brain Mapping | 2014

Functional correlates of cognitive dysfunction in multiple sclerosis: A multicenter fMRI Study

Maria A. Rocca; Paola Valsasina; Hanneke E. Hulst; Khaled Abdel-Aziz; Christian Enzinger; Antonio Gallo; Debora Pareto; Gianna Riccitelli; Nils Muhlert; O Ciccarelli; Frederik Barkhof; Franz Fazekas; Gioacchino Tedeschi; Maria J. Arévalo; Massimo Filippi

In this multicenter study, we applied functional magnetic resonance imaging (fMRI) to define the functional correlates of cognitive dysfunction in patients with multiple sclerosis (MS). fMRI scans during the performance of the N‐back task were acquired from 42 right‐handed relapsing remitting (RR) MS patients and 52 sex‐matched right‐handed healthy controls, studied at six European sites using 3.0 Tesla scanners. Patients with at least two abnormal (<2 standard deviations from the normative values) neuropsychological tests at a standardized evaluation were considered cognitively impaired (CI). FMRI data were analyzed using the SPM8 software, modeling regions showing load‐dependent activations/deactivations with increasing task difficulty. Twenty (47%) MS patients were CI. During the N‐back load condition, compared to controls and CI patients, cognitively preserved (CP) patients had increased recruitment of the right dorsolateral prefrontal cortex. As a function of increasing task difficulty, CI MS patients had reduced activations of several areas located in the fronto‐parieto‐temporal lobes as well as reduced deactivations of regions which are part of the default mode network compared to the other two groups. Significant correlations were found between abnormal fMRI patterns of activations and deactivations and behavioral measures, cognitive performance, and brain T2 and T1 lesion volumes. This multicenter study supports the theory that a preserved fMRI activity of the frontal lobe is associated with a better cognitive profile in MS patients. It also indicates the feasibility of fMRI to monitor disease evolution and treatment effects in future studies. Hum Brain Mapp 35:5799–5814, 2014.


Brain | 2015

Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis.

Niamh Cawley; Bhavana S. Solanky; Nils Muhlert; Carmen Tur; Richard A.E. Edden; Claudia A. M. Wheeler-Kingshott; David H. Miller; Alan J. Thompson; Olga Ciccarelli

Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = -0.403 mM, 95% confidence intervals -0.792, -0.014, P = 0.043) and sensorimotor cortex (adjusted difference = -0.385 mM, 95% confidence intervals -0.667, -0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid concentration in the sensorimotor cortex. Specifically for each unit decrease in gamma-aminobutyric acid levels (in mM), there was a predicted -10.86 (95% confidence intervals -16.786 to -4.482) decrease in grip strength (kg force) (P < 0.001) and -8.74 (95% confidence intervals -13.943 to -3.015) decrease in muscle strength (P < 0.006). This study suggests that reduced gamma-aminobutyric acid levels reflect pathological abnormalities that may play a role in determining physical disability. These abnormalities may include decreases in the pre- and postsynaptic components of gamma-aminobutyric acid neurotransmission and in the density of inhibitory neurons. Additionally, the reduced gamma-aminobutyric acid concentration may contribute to the neurodegenerative process, resulting in increased firing of axons, with consequent increased energy demands, which may lead to neuroaxonal degeneration and loss of the compensatory mechanisms that maintain motor function. This study supports the idea that modulation of gamma-aminobutyric acid neurotransmission may be an important target for neuroprotection in multiple sclerosis.See De Stefano and Giorgio (doi:10.1093/brain/awv213) for a scientific commentary on this article.


Memory | 2011

An fMRI study of long-term everyday memory using SenseCam

Fraser Milton; Nils Muhlert; Christopher R. Butler; Amy N. Smith; Abdelmalek Benattayallah; Adam Zeman

We used a novel automatic camera, SenseCam, to investigate recognition memory for real-life events at a 5-month retention interval. Using fMRI we assessed recollection and familiarity memory using the remember/know procedure. Recollection evoked no medial temporal lobe (MTL) activation compared to familiarity and new responses. Instead, recollection activated diverse regions in neocortex including medial prefrontal cortex. We observed decreased activation in anterior hippocampus/ anterior parahippocampal gyrus (aPHG) at 5 months compared to a 36-hour retention interval. Familiarity was associated with greater activation in aPHG and posterior parahippocampal gyrus (pPHG) than recollection and new responses. Familiarity activation decreased over time in anterior hippocampus/aPHG and posterior hippocampus/pPHG. The engagement of neocortical regions such as medial prefrontal cortex at a 5-month delay, together with the reduced MTL activation at 5 months relative to at 36 hours is in line with the assumptions of Consolidation theory. SenseCam provides a valuable technique for assessing the processes that underlie remote everyday recognition memory.

Collaboration


Dive into the Nils Muhlert's collaboration.

Top Co-Authors

Avatar

Declan Chard

National Institute for Health Research

View shared research outputs
Top Co-Authors

Avatar

M Ron

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Tarek A. Yousry

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Varun Sethi

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

David H. Miller

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Dh Miller

University College London

View shared research outputs
Top Co-Authors

Avatar

Rs Samson

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

O Ciccarelli

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Dt Chard

UCL Institute of Neurology

View shared research outputs
Researchain Logo
Decentralizing Knowledge