Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nils Wierup is active.

Publication


Featured researches published by Nils Wierup.


European Journal of Neuroscience | 2002

Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson's disease

Martin Lundblad; My Andersson; Christian Winkler; Deniz Kirik; Nils Wierup; M.A. Cenci

In an attempt to define clinically relevant models of akinesia and dyskinesia in 6‐hydroxydopamine (6‐OHDA)‐lesioned rats, we have examined the effects of drugs with high (l‐DOPA) vs. low (bromocriptine) dyskinesiogenic potential in Parkinsons disease on three types of motor performance, namely: (i) abnormal involuntary movements (AIMs) (ii) rotational behaviour, and (iii) spontaneous forelimb use (cylinder test). Rats with unilateral 6‐OHDA lesions received single daily i.p. injections of l‐DOPA or bromocriptine at therapeutic doses. During 3 weeks of treatment, l‐DOPA but not bromocriptine induced increasingly severe AIMs affecting the limb, trunk and orofacial region. Rotational behaviour was induced to a much higher extent by bromocriptine than l‐DOPA. In the cylinder test, the two drugs initially improved the performance of the parkinsonian limb to a similar extent. However, l‐DOPA‐treated animals showed declining levels of performance in this test because the drug‐induced AIMs interfered with physiological limb use, and gradually replaced all normal motor activities. l‐DOPA‐induced axial, limb and orolingual AIM scores were significantly reduced by the acute administration of compounds that have antidyskinetic efficacy in parkinsonian patients and/or nonhuman primates (−91%, yohimbine 10 mg/kg; −19%, naloxone 4–8 mg/kg; −37%, 5‐methoxy 5‐N,N‐dimethyl‐tryptamine 2 mg/kg; −30%, clozapine 8 mg/kg; −50%, amantadine 40 mg/kg). l‐DOPA‐induced rotation was, however, not affected. The present results demonstrate that 6‐OHDA‐lesioned rats do exhibit motor deficits that share essential functional similarities with parkinsonian akinesia or dyskinesia. Such deficits can be quantified using novel and relatively simple testing procedures, whereas rotometry cannot discriminate between dyskinetic and antiakinetic effects of antiparkinsonian treatments.


Nature Genetics | 2009

Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion

Valeriya Lyssenko; Cecilia Nagorny; Michael R. Erdos; Nils Wierup; Anna Maria Jönsson; Peter Spégel; Marco Bugliani; Richa Saxena; Malin Fex; N. Pulizzi; Bo Isomaa; Tiinamaija Tuomi; Peter Nilsson; Johanna Kuusisto; Jaakko Tuomilehto; Michael Boehnke; David Altshuler; F. Sundler; Johan G. Eriksson; Anne U. Jackson; Markku Laakso; Piero Marchetti; Richard M. Watanabe; Hindrik Mulder; Leif Groop

Genome-wide association studies have shown that variation in MTNR1B (melatonin receptor 1B) is associated with insulin and glucose concentrations. Here we show that the risk genotype of this SNP predicts future type 2 diabetes (T2D) in two large prospective studies. Specifically, the risk genotype was associated with impairment of early insulin response to both oral and intravenous glucose and with faster deterioration of insulin secretion over time. We also show that the MTNR1B mRNA is expressed in human islets, and immunocytochemistry confirms that it is primarily localized in β cells in islets. Nondiabetic individuals carrying the risk allele and individuals with T2D showed increased expression of the receptor in islets. Insulin release from clonal β cells in response to glucose was inhibited in the presence of melatonin. These data suggest that the circulating hormone melatonin, which is predominantly released from the pineal gland in the brain, is involved in the pathogenesis of T2D. Given the increased expression of MTNR1B in individuals at risk of T2D, the pathogenic effects are likely exerted via a direct inhibitory effect on β cells. In view of these results, blocking the melatonin ligand-receptor system could be a therapeutic avenue in T2D.


Regulatory Peptides | 2002

The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas.

Nils Wierup; Håkan Svensson; Hindrik Mulder; F. Sundler

OBJECTIVES Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), was recently identified in the stomach. Ghrelin is produced in a population of endocrine cells in the gastric mucosa, but expression in intestine, hypothalamus and testis has also been reported. Recent data indicate that ghrelin affects insulin secretion and plays a direct role in metabolic regulation and energy balance. On the basis of these findings, we decided to examine whether ghrelin is expressed in human pancreas. Specimens from fetal to adult human pancreas and stomach were studied by immunocytochemistry, for ghrelin and islet hormones, and in situ hybridisation, for ghrelin mRNA. RESULTS We identified ghrelin expression in a separate population of islet cells in human fetal, neonatal, and adult pancreas. Pancreatic ghrelin cells were numerous from midgestation to early postnatally (10% of all endocrine cells). The cells were few, but regularly seen in adults as single cells at the islet periphery, in exocrine tissue, in ducts, and in pancreatic ganglia. Ghrelin cells did not express any of the known islet hormones. In fetuses, at midgestation, ghrelin cells in the pancreas clearly outnumbered those in the stomach. CONCLUSIONS Ghrelin is expressed in a quite prominent endocrine cell population in human fetal pancreas, and ghrelin expression in the pancreas precedes by far that in the stomach. Pancreatic ghrelin cells remain in adult islets at lower numbers. Ghrelin is not co-expressed with any known islet hormone, and the ghrelin cells may therefore constitute a new islet cell type.


Journal of Histochemistry and Cytochemistry | 2004

Ghrelin is expressed in a novel endocrine cell type in developing rat islets and inhibits insulin secretion from INS-1 (832/13) cells.

Nils Wierup; Shumin Yang; R J McEvilly; Hindrik Mulder; F. Sundler

Ghrelin is produced mainly by endocrine cells in the stomach and is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). It also influences feeding behavior, metabolic regulation, and energy balance. It affects islet hormone secretion, and expression of ghrelin and GHS-R in the pancreas has been reported. In human islets, ghrelin expression is highest pre- and neonatally. We examined ghrelin and GHS-R in rat islets during development with immunocytochemistry and in situ hybridization. We also studied the effect of ghrelin on insulin secretion from INS-1 (832/13) cells and the expression of GHS-R in these cells. We found ghrelin expression in rat islet endocrine cells from mid-gestation to 1 month postnatally. Islet expression of GHS-R mRNA was detected from late fetal stages to adult. The onset of islet ghrelin expression preceded that of gastric ghrelin. Islet ghrelin cells constitute a separate and novel islet cell population throughout development. However, during a short perinatal period a minor subpopulation of the ghrelin cells co-expressed glucagon or pancreatic polypeptide. Markers for cell lineage, proliferation, and duct cells revealed that the ghrelin cells proliferate, originate from duct cells, and share lineage with glucagon cells. Ghrelin dose-dependently inhibited glucose-stimulated insulin secretion from INS-1 (832/13) cells, and GHS-R was detected in the cells. We conclude that ghrelin is expressed in a novel developmentally regulated endocrine islet cell type in the rat pancreas and that ghrelin inhibits glucose-stimulated insulin secretion via a direct effect on the β-cell.


Diabetes | 2012

Impact of an Exercise Intervention on DNA Methylation in Skeletal Muscle From First-Degree Relatives of Patients With Type 2 Diabetes

Marloes Dekker Nitert; Tasnim Dayeh; Peter Volkov; Targ Elgzyri; Elin Hall; Emma Nilsson; Beatrice Yang; Stefan Lang; Hemang Parikh; Ylva Wessman; Holger Weishaupt; Joanne L. Attema; Mia Abels; Nils Wierup; Peter Almgren; Per-Anders Jansson; Tina Rönn; Ola Hansson; Karl-Frederik Eriksson; Leif Groop; Charlotte Ling

To identify epigenetic patterns, which may predispose to type 2 diabetes (T2D) due to a family history (FH) of the disease, we analyzed DNA methylation genome-wide in skeletal muscle from individuals with (FH+) or without (FH−) an FH of T2D. We found differential DNA methylation of genes in biological pathways including mitogen-activated protein kinase (MAPK), insulin, and calcium signaling (P ≤ 0.007) and of individual genes with known function in muscle, including MAPK1, MYO18B, HOXC6, and the AMP-activated protein kinase subunit PRKAB1 in skeletal muscle of FH+ compared with FH− men. We further validated our findings from FH+ men in monozygotic twin pairs discordant for T2D, and 40% of 65 analyzed genes exhibited differential DNA methylation in muscle of both FH+ men and diabetic twins. We further examined if a 6-month exercise intervention modifies the genome-wide DNA methylation pattern in skeletal muscle of the FH+ and FH− individuals. DNA methylation of genes in retinol metabolism and calcium signaling pathways (P < 3 × 10−6) and with known functions in muscle and T2D including MEF2A, RUNX1, NDUFC2, and THADA decreased after exercise. Methylation of these human promoter regions suppressed reporter gene expression in vitro. In addition, both expression and methylation of several genes, i.e., ADIPOR1, BDKRB2, and TRIB1, changed after exercise. These findings provide new insights into how genetic background and environment can alter the human epigenome.


Endocrinology | 2012

A Major Lineage of Enteroendocrine Cells Coexpress CCK, Secretin, GIP, GLP-1, PYY, and Neurotensin but Not Somatostatin

Kristoffer L. Egerod; Maja S. Engelstoft; Kaare V. Grunddal; Mark K. Nøhr; Anna Secher; Ichiro Sakata; Jens Pedersen; Johanne Agerlin Windeløv; Ernst-Martin Füchtbauer; Jørgen Olsen; F. Sundler; Jan Pravsgaard Christensen; Nils Wierup; J. Olsen; Jens J. Holst; Jeffrey M. Zigman; Steen Seier Poulsen; Thue W. Schwartz

Enteroendocrine cells such as duodenal cholecystokinin (CCK cells) are generally thought to be confined to certain segments of the gastrointestinal (GI) tract and to store and release peptides derived from only a single peptide precursor. In the current study, however, transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the CCK promoter demonstrated a distribution pattern of CCK-eGFP positive cells that extended throughout the intestine. Quantitative PCR and liquid chromatography-mass spectrometry proteomic analyses of isolated, FACS-purified CCK-eGFP-positive cells demonstrated expression of not only CCK but also glucagon-like peptide 1 (GLP-1), gastric inhibitory peptide (GIP), peptide YY (PYY), neurotensin, and secretin, but not somatostatin. Immunohistochemistry confirmed this expression pattern. The broad coexpression phenomenon was observed both in crypts and villi as demonstrated by immunohistochemistry and FACS analysis of separated cell populations. Single-cell quantitative PCR indicated that approximately half of the duodenal CCK-eGFP cells express one peptide precursor in addition to CCK, whereas an additional smaller fraction expresses two peptide precursors in addition to CCK. The coexpression pattern was further confirmed through a cell ablation study based on expression of the human diphtheria toxin receptor under the control of the proglucagon promoter, in which activation of the receptor resulted in a marked reduction not only in GLP-1 cells, but also PYY, neurotensin, GIP, CCK, and secretin cells, whereas somatostatin cells were spared. Key elements of the coexpression pattern were confirmed by immunohistochemical double staining in human small intestine. It is concluded that a lineage of mature enteroendocrine cells have the ability to coexpress members of a group of functionally related peptides: CCK, secretin, GIP, GLP-1, PYY, and neurotensin, suggesting a potential therapeutic target for the treatment and prevention of diabetes and obesity.


European Journal of Neuroscience | 2007

Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes

Dorte Xenia Gram; Bo Ahrén; Istvan Nagy; Uffe Bang Olsen; Christian L. Brand; F. Sundler; René Tabanera; Ove Svendsen; Richard D. Carr; Péter Sántha; Nils Wierup; Anker Jon Hansen

The system that regulates insulin secretion from β‐cells in the islet of Langerhans has a capsaicin‐sensitive inhibitory component. As calcitonin gene‐related peptide (CGRP)‐expressing primary sensory fibers innervate the islets, and a major proportion of the CGRP‐containing primary sensory neurons is sensitive to capsaicin, the islet‐innervating sensory fibers may represent the capsaicin‐sensitive inhibitory component. Here, we examined the expression of the capsaicin receptor, vanilloid type 1 transient receptor potential receptor (TRPV1) in CGRP‐expressing fibers in the pancreatic islets, and the effect of selective elimination of capsaicin‐sensitive primary afferents on the decline of glucose homeostasis and insulin secretion in Zucker diabetic fatty (ZDF) rats, which are used to study various aspects of human type 2 diabetes mellitus. We found that CGRP‐expressing fibers in the pancreatic islets also express TRPV1. Furthermore, we also found that systemic capsaicin application before the development of hyperglycemia prevents the increase of fasting, non‐fasting, and mean 24‐h plasma glucose levels, and the deterioration of glucose tolerance assessed on the fifth week following the injection. These effects were accompanied by enhanced insulin secretion and a virtually complete loss of CGRP‐ and TRPV1‐coexpressing islet‐innervating fibers. These data indicate that CGRP‐containing fibers in the islets are capsaicin sensitive, and that elimination of these fibers contributes to the prevention of the deterioration of glucose homeostasis through increased insulin secretion in ZDF rats. Based on these data we propose that the activity of islet‐innervating capsaicin‐sensitive fibers may have a role in the development of reduced insulin secretion in human type 2 diabetes mellitus.


Nature Genetics | 2009

Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion RID A-4476-2009

Lyssenko; Clf Nagorny; Erdos; Nils Wierup; Anna Maria Jönsson; Peter Spégel; Marco Bugliani; Richa Saxena; Malin Fex; N. Pulizzi; Bo Isomaa; Tiinamaija Tuomi; Peter Nilsson; Johanna Kuusisto; Jaakko Tuomilehto; Michael Boehnke; David Altshuler; F. Sundler; Jg Eriksson; Au Jackson; Markku Laakso; Piero Marchetti; Rm Watanabe; Hindrik Mulder; Leif Groop

Genome-wide association studies have shown that variation in MTNR1B (melatonin receptor 1B) is associated with insulin and glucose concentrations. Here we show that the risk genotype of this SNP predicts future type 2 diabetes (T2D) in two large prospective studies. Specifically, the risk genotype was associated with impairment of early insulin response to both oral and intravenous glucose and with faster deterioration of insulin secretion over time. We also show that the MTNR1B mRNA is expressed in human islets, and immunocytochemistry confirms that it is primarily localized in β cells in islets. Nondiabetic individuals carrying the risk allele and individuals with T2D showed increased expression of the receptor in islets. Insulin release from clonal β cells in response to glucose was inhibited in the presence of melatonin. These data suggest that the circulating hormone melatonin, which is predominantly released from the pineal gland in the brain, is involved in the pathogenesis of T2D. Given the increased expression of MTNR1B in individuals at risk of T2D, the pathogenic effects are likely exerted via a direct inhibitory effect on β cells. In view of these results, blocking the melatonin ligand-receptor system could be a therapeutic avenue in T2D.


Regulatory Peptides | 2005

CART knock out mice have impaired insulin secretion and glucose intolerance, altered beta cell morphology and increased body weight

Nils Wierup; W.G. Richards; A.W. Bannon; Michael J. Kuhar; Bo Ahrén; F. Sundler

CART peptides are anorexigenic and are widely expressed in the central and peripheral nervous systems, as well as in endocrine cells in the pituitary, adrenal medulla and the pancreatic islets. To study the role of CART in islet function, we used CART null mutant mice (CART KO mice) and examined insulin secretion in vivo and in vitro, and expression of islet hormones and markers of beta-cell function using immunocytochemistry. We also studied CART expression in the normal pancreas. In addition, body weight development and food intake were documented. We found that in the normal mouse pancreas, CART was expressed in numerous pancreatic nerve fibers, both in the exocrine and endocrine portion of the gland. CART was also expressed in nerve cell bodies in the ganglia. Double immunostaining revealed expression in parasympathetic (vasoactive intestinal polypeptide (VIP)-containing) and in fewer sensory fibers (calcitonin gene-related peptide (CGRP)-containing). Although the expression of islet hormones appeared normal, CART KO islets displayed age dependent reduction of pancreatic duodenal homeobox 1 (PDX-1) and glucose transporter-2 (GLUT-2) immunoreactivity, indicating beta-cell dysfunction. Consistent with this, CART KO mice displayed impaired glucose-stimulated insulin secretion both in vivo after an intravenous glucose challenge and in vitro following incubation of isolated islets in the presence of glucose. The impaired insulin secretion in vivo was associated with impaired glucose elimination, and was apparent already in young mice with no difference in body weight. In addition, CART KO mice displayed increased body weight at the age of 40 weeks, without any difference in food intake. We conclude that CART is required for maintaining normal islet function in mice.


Neurogastroenterology and Motility | 2003

Cocaine- and amphetamine-regulated transcript: distribution and function in rat gastrointestinal tract

Eva Ekblad; Michael J. Kuhar; Nils Wierup; F. Sundler

Cocaine‐ and amphetamine‐regulated transcript (CART) peptide, originally isolated from brain, is also expressed in the peripheral nervous system. The distribution, origin and projections of CART‐expressing enteric neurones by immunocytochemistry and in situ hybridization in rat gastrointestinal (GI) tract were studied. Possible motor functions of CART were studied in vitro using longitudinal muscle strips from stomach, ileum and colon. Cocaine‐ and amphetamine‐regulated transcript peptide was found in numerous myenteric neurones throughout the GI tract while CART‐expressing submucous neurones were scarce. Cocaine‐ and amphetamine‐regulated transcript was also expressed in the antral gastrin cells. Myenteric CART‐expressing neurones in both small and large intestine issued short descending projections. In atrophic ileum, CART mRNA‐expressing neurones increased in number while neurones containing CART peptide decreased. In hypertrophied ileum, no change in CART peptide or CART mRNA containing myenteric neurones was detected. Cocaine‐ and amphetamine‐regulated transcript 55–102 (10−9–10−7 mol L−1) did not induce any contractile or relaxatory responses in the muscle strips, neither did it affect responses induced by vasoactive intestinal peptide, pituitary adenylate cyclase‐activating peptide or neuronal stimulation. In colonic, but not in ileal, strips addition of CART attenuated nitric oxide (NO) donor‐induced relaxations. Although CART does not seem to play a pivotal role in classic neurotransmission to the longitudinal muscle, it may serve a modulatory role in NO transmission. It may, moreover, be involved in intestinal adaptation, and an additional hormonal role is also possible.

Collaboration


Dive into the Nils Wierup's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge