Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nima Shamsaei is active.

Publication


Featured researches published by Nima Shamsaei.


Journal of The Mechanical Behavior of Biomedical Materials | 2015

Fatigue of Nitinol: The state-of-the-art and ongoing challenges.

Mohammad J. Mahtabi; Nima Shamsaei; M.R. Mitchell

Nitinol, a nearly equiatomic alloy of nickel and titanium, has been considered for a wide range of applications including medical and dental devices and implants as well as aerospace and automotive components and structures. The realistic loading condition in many of these applications is cyclic; therefore, fatigue is often the main failure mode for such components and structures. The fatigue behavior of Nitinol involves many more complexities compared with traditional metal alloys arising from its uniqueness in material properties such as superelasticity and shape memory effects. In this paper, a review of the present state-of-the-art on the fatigue behavior of superelastic Nitinol is presented. Various aspects of fatigue of Nitinol are discussed and microstructural effects are explained. Effects of material preparation and testing conditions are also reviewed. Finally, several conclusions are made and recommendations for future works are offered.


Journal of The Mechanical Behavior of Biomedical Materials | 2016

Multiaxial fatigue modeling for Nitinol shape memory alloys under in-phase loading

Mohammad J. Mahtabi; Nima Shamsaei

The realistic loading condition for many components is multiaxial arising from multidirectional loading or geometry complexities. In this study, some multiaxial stress-based classical and critical plane fatigue models are briefly reviewed and their application for martensitic Nitinol under torsion and in-phase axial-torsion loading is evaluated. These models include von Mises equivalent stress, Tresca, Findley, McDiarmid, and a proposed stress-based Fatemi-Socie-type model. As the fatigue cracks appear to be on the maximum shear plane for the martensitic Nitinol, all the models examined here consider the shear stress as the primary damage parameter. Among all the models considered in this study, the proposed Fatemi-Socie-type model provides a better prediction for fatigue lives when compared to torsion and in-phase multiaxial fatigue experimental data from literature. Analyses indicate that critical plane approaches are more appropriate for multiaxial fatigue prediction of Nitinol alloys, at least in martensitic phase. Finally, recommendations are made to calibrate more reliable multiaxial fatigue models for Nitinol.


Journal of The Mechanical Behavior of Biomedical Materials | 2015

Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK).

Jutima Simsiriwong; Rakish Shrestha; Nima Shamsaei; Marcos Lugo; Robert D. Moser

In this study, the effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK) was investigated. Due to the versatility of its material properties, the semi-crystralline PEEK polymer has been increasingly adopted in a wide range of applications particularly as a biomaterial for orthopedic, trauma, and spinal implants. To obtain the cyclic behavior of PEEK, uniaxial fully-reversed strain-controlled fatigue tests were conducted at ambient temperature and at 0.02 mm/mm to 0.04 mm/mm strain amplitudes. The microstructure of PEEK was obtained using the optical and the scanning electron microscope (SEM) to determine the microstructural inclusion properties in PEEK specimen such as inclusion size, type, and nearest neighbor distance. SEM analysis was also conducted on the fracture surface of fatigue specimens to observe microstructural inclusions that served as the crack incubation sites. Based on the experimental strain-life results and the observed microstructure of fatigue specimens, a microstructure-sensitive fatigue model was used to predict the fatigue life of PEEK that includes both crack incubation and small crack growth regimes. Results show that the employed model is applicable to capture microstructural effects on fatigue behavior of PEEK.


IISE Transactions | 2017

Accelerated process optimization for laser-based additive manufacturing by leveraging similar prior studies

Amir M. Aboutaleb; Linkan Bian; Alaa Elwany; Nima Shamsaei; Scott M. Thompson; Gustavo Tapia

ABSTRACT Manufacturing parts with target properties and quality in Laser-Based Additive Manufacturing (LBAM) is crucial toward enhancing the “trustworthiness” of this emerging technology and pushing it into the mainstream. Most of the existing LBAM studies do not use a systematic approach to optimize process parameters (e.g., laser power, laser velocity, layer thickness, etc.) for desired part properties. We propose a novel process optimization method that directly utilizes experimental data from previous studies as the initial experimental data to guide the sequential optimization experiments of the current study. This serves to reduce the total number of time- and cost-intensive experiments needed. We verify our method and test its performance via comprehensive simulation studies that test various types of prior data. The results show that our method significantly reduces the number of optimization experiments, compared with conventional optimization methods. We also conduct a real-world case study that optimizes the relative density of parts manufactured using a Selective Laser Melting system. A combination of optimal process parameters is achieved within five experiments.


ASME 2015 International Mechanical Engineering Congress and Exposition | 2015

Mechanical and Microstructural Properties of Selective Laser Melted 17-4 PH Stainless Steel

Aref Yadollahi; Nima Shamsaei; Scott M. Thompson; Alaa Elwany; Linkan Bian

The present article focuses on the mechanical properties and microstructural features of Selective Laser Melted (SLM) 17-4 precipitation hardening (PH) stainless steel (SS) as well as their comparison to conventionally built materials. The topics investigated are the effects of different building orientations and post-fabrication heat treatment (solution annealing and aging) on the mechanical and microstructural characteristics of samples fabricated by SLM. Yield and ultimate tensile strengths of SLM-produced 17-4 PH SS were found to be lower than those of wrought materials (H900 condition). In addition, building orientations showed a noticeable effect on tensile properties. Presence of defects, such as pores resulting from entrapped gas, un-melted regions, and powder particles resulting from lack of fusion were the main reasons for lower elongation to failure of SLM-produced 17-4PH SS in this study.Copyright


Rapid Prototyping Journal | 2016

Utilization of a microstructure sensitive fatigue model for additively manufactured Ti-6Al-4V

Brian Torries; Amanda J. Sterling; Nima Shamsaei; Scott M. Thompson; Steve Daniewicz

Purpose The purpose of this study is to calibrate a microstructure-based fatigue model for its use in predicting fatigue life of additively manufactured (AM) Ti-6Al-4V. Fatigue models that are capable of better predicting the fatigue behavior of AM metals is required to further the adoption of such metals by various industries. The trustworthiness of AM metallic material is not well characterized, and fatigue models that consider unique microstructure and porosity inherent to AM parts are needed. Design/methodology/approach Various Ti-6Al-4V samples were additively manufactured using Laser Engineered Net Shaping (LENS), a direct laser deposition method. The porosity within the LENS samples, as well as their subsequent heat treatment, was varied to determine the effects of microstructure and defects on fatigue life. The as-built and heat-treated LENS samples, together with wrought Ti-6Al-4V samples, underwent fatigue testing and microstructure and fractographic inspection. The collected microstructure/defect statistics were used for calibrating a microstructure-sensitive fatigue model. Findings Fatigue lives of the LENS Ti-6Al-4V samples were found to be consistently less than those of the wrought Ti-6Al-4V samples, and this is attributed to the presence of pores/defects within the LENS material. Results further indicate that LENS Ti-6Al-4V fatigue lives, as predicted by the used microstructure-sensitive fatigue model, are in close agreement with experimental results. The used model could predict upper and lower prediction bounds based on defect statistics. All the fatigue data were found to be within the bounds predicted by the microstructure-sensitive fatigue model. Research limitations/implications To further test the utility of microstructure-sensitive fatigue models for predicting fatigue life of AM samples, future studies on additional material types, additive manufacturing processes and heat treatments should be conducted. Originality/value This study shows the utility of a microstructure-sensitive fatigue model for use in predicting the fatigue life of LENS Ti-6Al-4V with various levels of porosity and while in a heat-treated condition.


Data in Brief | 2016

Data indicating temperature response of Ti-6Al-4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping.

Garrett J. Marshall; Scott M. Thompson; Nima Shamsaei

An OPTOMEC Laser Engineered Net Shaping (LENS™) 750 system was retrofitted with a melt pool pyrometer and in-chamber infrared (IR) camera for nondestructive thermal inspection of the blown-powder, direct laser deposition (DLD) process. Data indicative of temperature and heat transfer within the melt pool and heat affected zone atop a thin-walled structure of Ti–6Al–4V during its additive manufacture are provided. Melt pool temperature data were collected via the dual-wavelength pyrometer while the dynamic, bulk part temperature distribution was collected using the IR camera. Such data are provided in Comma Separated Values (CSV) file format, containing a 752×480 matrix and a 320×240 matrix of temperatures corresponding to individual pixels of the pyrometer and IR camera, respectively. The IR camera and pyrometer temperature data are provided in blackbody-calibrated, raw forms. Provided thermal data can aid in generating and refining process-property-performance relationships between laser manufacturing and its fabricated materials.


ASME 2015 International Mechanical Engineering Congress and Exposition | 2015

Modeling, Simulation and Experimental Validation of Heat Transfer During Selective Laser Melting

Mohammad Masoomi; Xiang Gao; Scott M. Thompson; Nima Shamsaei; Linkan Bian; Alaa Elwany

Selective Laser Melting (SLM), a laser powder-bed fusion (PBF-L) additive manufacturing method, utilizes a laser to selectively fuse adjacent metal powders. The powders are aligned in a bed that moves vertically to allow for layer-by-layer part construction-Process-related heat transfer and thermal gradients have a strong influence on the microstructural features, and subsequent mechanical properties, of the parts fabricated via SLM. In order to understand and control the heat transfer inherent to SLM, and to ensure high quality parts with targeted microstructures and mechanical properties, comprehensive knowledge of the related energy and mass transport during manufacturing is required. In this study, the transient temperature distribution within and around parts being fabricated via SLM is numerically simulated and the results are provided to aid in quantify the SLM heat transfer. In order to verify simulation output, and to estimate actual thermal gradients and heat transfer, experiments were separately conducted within a SLM machine using a substrate with embedded thermocouples. The experiments focused on characterizing heat fluxes during initial deposition on an initially-cold substrate and during the fabrication of a thin-walled structure built via stainless steel 17-4 powders. Results indicate that it is important to model heat transfer thorough powder bed as well as substrate.Copyright


Rapid Prototyping Journal | 2017

Mechanical properties and microstructural characterization of selective laser melted 17-4 PH stainless steel

Mohamad Mahmoudi; Alaa Elwany; Aref Yadollahi; Scott M. Thompson; Linkan Bian; Nima Shamsaei

Purpose The purpose of this paper is to understand the effect of four different factors: building orientation, heat treatment (solution annealing and aging), thermal history and process parameters on the mechanical properties and microstructural features of 17-4 precipitation hardening (PH) stainless steel (SS) parts produced using selective laser melting (SLM). Design/methodology/approach Various sets of test samples were built on a ProX 100™ SLM system under argon environment. Characterization studies were conducted using mechanical tensile and compression test, microhardness test, optical microscopy, X-ray diffraction and scanning electron microscopy. Findings Results indicate that building orientation has a direct effect on the mechanical properties of SLM parts, as vertically built samples exhibit lower yield and tensile strengths and elongation to failure. Post-SLM heat treatment proved to have positive effects on part strength and hardness, but it resulted in reduced ductility. Longer inter-layer time intervals between the melting of successive layers allow for higher austenite content because of lower cooling rates, thus decreasing material hardness. On the other hand, tensile properties such as elongation to failure, yield strength and tensile strength were not significantly affected by the change in inter-layer time intervals. Similar to other AM processes, SLM process parameters were shown to be instrumental in achieving desirable part properties. It is shown that without careful setting of process parameters, parts with defects (porosity and unmelted powder particles) can be produced. Originality/value Although the manufacturing of 17-4 PH SS using SLM has been investigated in the literature, the paper provides the first comprehensive study on the effect of different factors on mechanical properties and microstructure of SLM 17-4 PH. Optimizing process parameters and using heat treatment are shown to improve the properties of the part.


Data in Brief | 2016

Strain-based fatigue data for Ti–6Al–4V ELI under fully-reversed and mean strain loads

Patricio E. Carrion; Nima Shamsaei

This article presents the experimental data supporting the study to obtain the mean strain/stress effects on the fatigue behavior of Ti–6Al–4V ELI. A series of strain-controlled fatigue experiments on Ti–6Al–4V ELI were performed at four strain ratios (−1, −0.5, 0, and 0.5). Two types of data are included for each specimen. These are the hysteresis stress–strain responses for the cycle in a log10 increment, and the maximum and minimum stress–strain responses for each cycle. Fatigue lives are also reported for all the experiments.

Collaboration


Dive into the Nima Shamsaei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linkan Bian

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Jutima Simsiriwong

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Aref Yadollahi

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Torries

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rakish Shrestha

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Amanda J. Sterling

Mississippi State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge