Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nima Sharifi is active.

Publication


Featured researches published by Nima Sharifi.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer

Kai Hsiung Chang; Rui Li; Mahboubeh Papari-Zareei; Lori Watumull; Yan Daniel Zhao; Richard J. Auchus; Nima Sharifi

In the majority of cases, advanced prostate cancer responds initially to androgen deprivation therapy by depletion of gonadal testosterone. The response is usually transient, and metastatic tumors almost invariably eventually progress as castration-resistant prostate cancer (CRPC). The development of CRPC is dependent upon the intratumoral generation of the potent androgen, dihydrotestosterone (DHT), from adrenal precursor steroids. Progression to CRPC is accompanied by increased expression of steroid-5α-reductase isoenzyme-1 (SRD5A1) over SRD5A2, which is otherwise the dominant isoenzyme expressed in the prostate. DHT synthesis in CRPC is widely assumed to require 5α-reduction of testosterone as the obligate precursor, and the increased expression of SRD5A1 is thought to reflect its role in converting testosterone to DHT. Here, we show that the dominant route of DHT synthesis in CRPC bypasses testosterone, and instead requires 5α-reduction of androstenedione by SRD5A1 to 5α-androstanedione, which is then converted to DHT. This alternative pathway is operational and dominant in both human CRPC cell lines and fresh tissue obtained from human tumor metastases. Moreover, CRPC growth in mouse xenograft models is dependent upon this pathway, as well as expression of SRD5A1. These findings reframe the fundamental metabolic pathway that drives CRPC progression, and shed light on the development of new therapeutic strategies.


Cell | 2013

A Gain-of-Function Mutation in DHT Synthesis in Castration-Resistant Prostate Cancer

Kai Hsiung Chang; Rui Li; Barbara Kuri; Yair Lotan; Claus G. Roehrborn; Jiayan Liu; Robert L. Vessella; Peter S. Nelson; Payal Kapur; Xiaofeng Guo; Hamid Mirzaei; Richard J. Auchus; Nima Sharifi

Growth of prostate cancer cells is dependent upon androgen stimulation of the androgen receptor (AR). Dihydrotestosterone (DHT), the most potent androgen, is usually synthesized in the prostate from testosterone secreted by the testis. Following chemical or surgical castration, prostate cancers usually shrink owing to testosterone deprivation. However, tumors often recur, forming castration-resistant prostate cancer (CRPC). Here, we show that CRPC sometimes expresses a gain-of-stability mutation that leads to a gain-of-function in 3β-hydroxysteroid dehydrogenase type 1 (3βHSD1), which catalyzes the initial rate-limiting step in conversion of the adrenal-derived steroid dehydroepiandrosterone to DHT. The mutation (N367T) does not affect catalytic function, but it renders the enzyme resistant to ubiquitination and degradation, leading to profound accumulation. Whereas dehydroepiandrosterone conversion to DHT is usually very limited, expression of 367T accelerates this conversion and provides the DHT necessary to activate the AR. We suggest that 3βHSD1 is a valid target for the treatment of CRPC.


Clinical Cancer Research | 2008

Effect of SLCO1B3 Haplotype on Testosterone Transport and Clinical Outcome in Caucasian Patients with Androgen-Independent Prostatic Cancer

Akinobu Hamada; Tristan M. Sissung; Douglas K. Price; Romano Danesi; Cindy H. Chau; Nima Sharifi; David Venzon; Kenji Maeda; Keisuke Nagao; Alex Sparreboom; Hiroaki Mitsuya; William L. Dahut; William D. Figg

Purpose: The organic anion transporter OATP1B3, encoded by SLCO1B3, is involved in the transport of steroid hormones. However, its role in testosterone uptake and clinical outcome of prostatic cancer is unknown. This study examined (a) the SLCO1B3 genotype in cancer cells as well as the uptake of testosterone by cells transfected with genetic variants of SLCO1B3; (b) the expression of OATP1B3 in normal prostate, benign prostatic hyperplasia, and prostatic cancer; and (c) the role of SLCO1B3 haplotype on clinical outcome of Caucasian patients with androgen-independent prostatic cancer. Experimental Design:SLCO1B3 genotype was assessed in the NCI-60 panel of tumor cells by sequencing, whereas testosterone transport was analyzed in Cos-7 cells transfected with WT, 334G, and 699A SLCO1B3 variants. OATP1B3 expression in prostatic tissues was examined by fluorescence microscopy, and the relationship between SLCO1B3 haplotypes and survival was examined in patients. Results: Cells transfected with wild-type (334T/699G) SLCO1B3, or with a vector containing either the 334G or 699A variants, actively transported testosterone, whereas its uptake was impaired in cells transfected with a gene carrying both 334G and 699A single nucleotide polymorphisms. Prostatic cancer overexpresses OATP1B3 compared with normal or benign hyperplastic tissue; patients with SLCO1B3 334GG/699AA haplotype showed longer median survival (8.5 versus 6.4 years; P = 0.020) and improved survival probability at 10 years (42% versus 23%; P < 0.023) than patients carrying TT/AA and TG/GA haplotypes. Conclusions: The common SLCO1B3 GG/AA haplotype is associated with impaired testosterone transport and improved survival in patients with prostatic cancer.


Nature | 2015

Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer

Zhenfei Li; Andrew C. Bishop; Mohammad Alyamani; Jorge A. Garcia; Robert Dreicer; Dustin R. Bunch; Jiayan Liu; Sunil K. Upadhyay; Richard J. Auchus; Nima Sharifi

Prostate cancer resistance to castration occurs because tumours acquire the metabolic capability of converting precursor steroids to 5α-dihydrotestosterone (DHT), promoting signalling by the androgen receptor and the development of castration-resistant prostate cancer. Essential for resistance, DHT synthesis from adrenal precursor steroids or possibly from de novo synthesis from cholesterol commonly requires enzymatic reactions by 3β-hydroxysteroid dehydrogenase (3βHSD), steroid-5α-reductase (SRD5A) and 17β-hydroxysteroid dehydrogenase (17βHSD) isoenzymes. Abiraterone, a steroidal 17α-hydroxylase/17,20-lyase (CYP17A1) inhibitor, blocks this synthetic process and prolongs survival. We hypothesized that abiraterone is converted by an enzyme to the more active Δ4-abiraterone (D4A), which blocks multiple steroidogenic enzymes and antagonizes the androgen receptor, providing an additional explanation for abiraterone’s clinical activity. Here we show that abiraterone is converted to D4A in mice and patients with prostate cancer. D4A inhibits CYP17A1, 3βHSD and SRD5A, which are required for DHT synthesis. Furthermore, competitive androgen receptor antagonism by D4A is comparable to the potent antagonist enzalutamide. D4A also has more potent anti-tumour activity against xenograft tumours than abiraterone. Our findings suggest an additional explanation—conversion to a more active agent—for abiraterone’s survival extension. We propose that direct treatment with D4A would be more clinically effective than abiraterone treatment.


Journal of Clinical Oncology | 2011

SLCO2B1 and SLCO1B3 May Determine Time to Progression for Patients Receiving Androgen Deprivation Therapy for Prostate Cancer

Ming Yang; Wanling Xie; Elahe A. Mostaghel; Mari Nakabayashi; Lillian Werner; Tong Sun; Mark Pomerantz; Matthew L. Freedman; Robert Ross; Meredith M. Regan; Nima Sharifi; William D. Figg; Steven P. Balk; Myles Brown; Mary-Ellen Taplin; William Oh; Gwo-Shu Mary Lee; Philip W. Kantoff

PURPOSE Androgen deprivation therapy (ADT), an important treatment for advanced prostate cancer, is highly variable in its effectiveness. We hypothesized that genetic variants of androgen transporter genes, SLCO2B1 and SLCO1B3, may determine time to progression on ADT. PATIENTS AND METHODS A cohort of 538 patients with prostate cancer treated with ADT was genotyped for SLCO2B1 and SLCO1B3 single nucleotide polymorphisms (SNP). The biologic function of a SLCO2B1 coding SNP in transporting androgen was examined through biochemical assays. RESULTS Three SNPs in SLCO2B1 were associated with time to progression (TTP) on ADT (P < .05). The differences in median TTP for each of these polymorphisms were about 10 months. The SLCO2B1 genotype, which allows more efficient import of androgen, enhances cell growth and is associated with a shorter TTP on ADT. Patients carrying both SLCO2B1 and SLCO1B3 genotypes, which import androgens more efficiently, exhibited a median 2-year shorter TTP on ADT, demonstrating a gene-gene interaction (P(interaction) = .041). CONCLUSION Genetic variants of SLCO2B1 and SLCO1B3 may function as pharmacogenomic determinants of resistance to ADT in prostate cancer.


Endocrine-related Cancer | 2010

An update on androgen deprivation therapy for prostate cancer

Nima Sharifi; James L. Gulley; William L. Dahut

Androgen deprivation therapy (ADT) with gonadal testosterone depletion is the frontline treatment for advanced prostate cancer. Other hormonal interventions have a role in the treatment of prostate cancer. We sought to examine systematically the evidence for hormonal interventions in prostate cancer, risks of ADT, and interventions that mitigate these risks. Search results for therapeutic studies were focused primarily on randomized controlled clinical trials, and the Jadad scale criteria were used to evaluate the quality of these studies. Four trials of the efficacy of intermittent ADT versus continuous ADT were included. One randomized study analysis and six postrandomization analyses were included on the effects of ADT on cardiovascular mortality. Seven randomized controlled trials of pharmacologic interventions were included for the treatment of metabolic effects due to ADT. One randomized trial of GnRH antagonist versus GnRH agonist was included. Six phase I/II clinical trials of secondary hormonal therapies with novel mechanisms of action were included. Randomized studies completed to date indicate that intermittent ADT might be equivalent to continuous ADT. Although adverse effects of ADT include risk factors for cardiovascular disease, effects on cardiovascular mortality are uncertain. Bone loss and increased risk of fracture may be effectively treated with pharmacologic interventions. Benefits of ADT must be balanced with a consideration of the risks.


Clinical Cancer Research | 2012

Abiraterone Inhibits 3β-Hydroxysteroid Dehydrogenase: A Rationale for Increasing Drug Exposure in Castration-Resistant Prostate Cancer

Rui Li; Kristen Evaul; Kamalesh K. Sharma; Kai Hsiung Chang; Jennifer Yoshimoto; Jiayan Liu; Richard J. Auchus; Nima Sharifi

Purpose: Treatment with abiraterone (abi) acetate prolongs survival in castration-resistant prostate cancer (CRPC). Resistance to abi invariably occurs, probably due in part to upregulation of steroidogenic enzymes and/or other mechanisms that sustain dihydrotestosterone (DHT) synthesis, which raises the possibility of reversing resistance by concomitant inhibition of other required steroidogenic enzymes. On the basis of the 3β-hydroxyl, Δ5-structure, we hypothesized that abi also inhibits 3β-hydroxysteroid dehydrogenase/isomerase (3βHSD), which is absolutely required for DHT synthesis in CRPC, regardless of origins or routes of synthesis. Experimental Design: We tested the effects of abi on 3βHSD activity, androgen receptor localization, expression of androgen receptor–responsive genes, and CRPC growth in vivo. Results: Abi inhibits recombinant 3βHSD activity in vitro and endogenous 3βHSD activity in LNCaP and LAPC4 cells, including conversion of [3H]-dehydroepiandrosterone (DHEA) to Δ4-androstenedione, androgen receptor nuclear translocation, expression of androgen receptor–responsive genes, and xenograft growth in orchiectomized mice supplemented with DHEA. Abi also blocks conversion of Δ5-androstenediol to testosterone by 3βHSD. Abi inhibits 3βHSD1 and 3βHSD2 enzymatic activity in vitro; blocks conversion from DHEA to androstenedione and DHT with an IC50 value of less than 1 μmol/L in CRPC cell lines; inhibits androgen receptor nuclear translocation; expression of TMPRSS2, prostate-specific antigen, and FKBP5; and decreases CRPC xenograft growth in DHEA-supplemented mice. Conclusions: We conclude that abi inhibits 3βHSD-mediated conversion of DHEA to active androgens in CRPC. This second mode of action might be exploited to reverse resistance to CYP17A1 inhibition at the standard abi dose by dose-escalation or simply by administration with food to increase drug exposure. Clin Cancer Res; 18(13); 3571–9. ©2012 AACR.


The Journal of Pathology | 2009

Prostate Cancer Stem Cells

Elaine M. Hurt; George J. Klarmann; Brian T. Kawasaki; Nima Sharifi; William L. Farrar

Despite the discovery over 60 years ago by Huggins and Hodges 1 that prostate cancers respond to androgen deprivation therapy, hormone‐refractory prostate cancer remains a major clinical challenge. There is now mounting evidence that solid tumours originate from undifferentiated stem cell‐like cells coexisting within a heterogeneous tumour mass that drive tumour formation, maintain tumour homeostasis and initiate metastases. This review focuses upon current evidence for prostate cancer stem cells, addressing the identification and properties of both normal and transformed prostate stem cells. Copyright


Endocrinology | 2010

3β-hydroxysteroid dehydrogenase is a possible pharmacological target in the treatment of castration-resistant prostate cancer

Kristen Evaul; Rui Li; Mahboubeh Papari-Zareei; Richard J. Auchus; Nima Sharifi

Prostate cancer usually responds to androgen deprivation therapy, although the response in metastatic disease is almost always transient and tumors eventually progress as castration-resistant prostate cancer (CRPC). CRPC continues to be driven by testosterone or dihydrotestosterone from intratumoral metabolism of 19-carbon adrenal steroids from circulation, and/or de novo intratumoral steroidogenesis. Both mechanisms require 3beta-hydroxysteroid dehydrogenase (3betaHSD) metabolism of Delta(5)-steroids, including dehydroepiandrosterone (DHEA) and Delta(5)-androstenediol (A5diol), to testosterone. In contrast, reports that DHEA and A5diol directly activate the androgen receptor (AR) suggest that 3betaHSD metabolism is not required and that 3betaHSD inhibitors would be ineffective in the treatment of CRPC. We hypothesized that activation of AR in prostate cancer by DHEA and A5diol requires their conversion via 3betaHSD to androstenedione and testosterone, respectively. Here, we show that DHEA and A5diol induce AR chromatin occupancy and AR-regulated genes. Furthermore, we show that Delta(5)-androgens undergo 3beta-dehydrogenation in prostate cancer and that induction of AR nuclear translocation, AR chromatin occupancy, transcription of PSA, TMPRSS2, and FKBP5, as well as cell proliferation by DHEA and A5diol, are all blocked by inhibitors of 3betaHSD. These findings demonstrate that DHEA and A5diol must be metabolized by 3betaHSD to activate AR in these models of CRPC. Furthermore, this work suggests that 3betaHSD may be exploited as a pharmacologic target in the treatment of CRPC.


BJUI | 2005

A retrospective study of the time to clinical endpoints for advanced prostate cancer

Nima Sharifi; William L. Dahut; Seth M. Steinberg; William D. Figg; Christopher Tarassoff; Philip M. Arlen; James L. Gulley

Authors from the National Cancer Institute present a study which assessed the time to androgen independence and overall survival for patients with metastatic prostate cancer. They reported a longer than expected survival with androgen‐independent prostate cancer, and make original observations on the time to metastatic disease for patients with no evidence of radiographic disease.

Collaboration


Dive into the Nima Sharifi's collaboration.

Top Co-Authors

Avatar

Richard J. Auchus

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William D. Figg

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William L. Farrar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William L. Dahut

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge