Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nina Derby is active.

Publication


Featured researches published by Nina Derby.


Science Translational Medicine | 2012

An Intravaginal Ring That Releases the NNRTI MIV-150 Reduces SHIV Transmission in Macaques

Rachel Singer; Paul Mawson; Nina Derby; Aixa Rodriguez; Larisa Kizima; Radhika Menon; Daniel Goldman; Jessica Kenney; Meropi Aravantinou; Samantha Seidor; Agegnehu Gettie; James Blanchard; Michael Piatak; Jeffrey D. Lifson; José A. Fernández-Romero; Melissa Robbiani; Thomas M. Zydowsky

An intravaginal ring loaded with the NNRTI MIV-150 prevents transmission of the HIV/SIV chimera SHIV-RT in macaques. HIV Protection That Has a Ring to It An ounce of prevention is better than a pound of cure. This is especially true for HIV, where no cure exists. Pre-exposure prophylaxis is showing promising results in preventing HIV transmission in early clinical trials, but the means of delivery of active pharmaceutical ingredients remains a major challenge. Singer et al. now show that the non-nucleoside reverse transcriptase inhibitor MIV-150 delivered by intravaginal rings can protect macaques from simian/HIV (SHIV) infection. For pre-exposure prophylaxis to be successful, individuals must remember and be willing to treat themselves regularly. Intravaginal rings are well tolerated among women and—through sustained release—can help overcome this adherence bottleneck. The authors test the efficacy of MIV-150 when delivered by intravaginal rings made of either ethylene vinyl acetate or silicone. MIV-150 was successfully delivered to vaginal fluids and tissues and protected macaques from SHIV infection. If these studies hold true in people, intravaginal rings containing MIV-150 may help prevent HIV infection. Microbicides may prevent HIV and sexually transmitted infections (STIs) in women; however, determining the optimal means of delivery of active pharmaceutical ingredients remains a major challenge. We previously demonstrated that a vaginal gel containing the non-nucleoside reverse transcriptase inhibitor MIV-150 partially protected macaques from SHIV-RT (simian/HIV reverse transcriptase) infection, and the addition of zinc acetate rendered the gel significantly protective. We test the activity of MIV-150 without the addition of zinc acetate when delivered from either ethylene vinyl acetate (EVA) or silicone intravaginal rings (IVRs). MIV-150 was successfully delivered, because it was detected in vaginal fluids and tissues by radioimmunoassay in pharmacokinetic studies. Moreover, EVA IVRs significantly protected macaques from SHIV-RT infection. Our results demonstrate that MIV-150–containing IVRs have the potential to prevent HIV infection and highlight the possible use of IVRs for delivering drugs that block HIV and other STIs.


Journal of Virology | 2011

The Nonnucleoside Reverse Transcriptase Inhibitor MIV-150 in Carrageenan Gel Prevents Rectal Transmission of Simian/Human Immunodeficiency Virus Infection in Macaques

Rachel Singer; Nina Derby; Aixa Rodriguez; Larisa Kizima; Jessica Kenney; Meropi Aravantinou; Anne Chudolij; Agegnehu Gettie; James Blanchard; J. D. Lifson; Mike Piatak; José A. Fernández-Romero; Thomas M. Zydowsky; Melissa Robbiani

ABSTRACT Development of a microbicide that prevents rectal transmission of human immunodeficiency virus (HIV) is a vital component in reducing HIV spread. We recently demonstrated that a formulation of the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan reduced vaginal infection of macaques with simian immunodeficiency virus SIVmac239 with HIV-1HxB2 reverse transcriptase (SHIV-RT). Herein, we performed the first testing of MIV-150–carrageenan against rectal infection. Rhesus macaques were treated rectally with MIV-150–carrageenan or methyl cellulose (MC) placebo gel up to 4 h prior to rectal challenge with 103 or 104 50% tissue culture infective doses (TCID50) of SHIV-RT. Infection was assessed by measuring plasma virus RNA as well as T and B cell responses. MIV-150–carrageenan protected all animals challenged with 103 TCID50 when gel was applied either 30 min or 4 h prior to challenge, while 100% of the MC-treated animals became infected (n = 4 each; P < 0.03). Partial protection (2 of 4 animals) by MIV-150–carrageenan was observed for rectal challenge with 10-fold more virus applied 4 h after the gel. Sequencing of the RT gene from plasma virus RNA isolated at peak viremia confirmed that both of these animals (like infected MC controls) were infected with wild-type virus. Infection correlated with the development of SIV-specific T and B cell responses. MIV-150 was detected in the rectal fluids and tissues 4 h after gel application but was not detected in the blood at any time (0.5 to 24 h). These data are promising for the development of NNRTI-containing gels to prevent rectal HIV transmission.


PLOS ONE | 2014

A Potent Combination Microbicide that Targets SHIV-RT, HSV-2 and HPV

Larisa Kizima; Aixa Rodriguez; Jessica Kenney; Nina Derby; Olga Mizenina; Radhika Menon; Samantha Seidor; Shimin Zhang; Keith Levendosky; Ninochka Jean-Pierre; Pavel Pugach; Guillermo Villegas; Brian E. Ford; Agegnehu Gettie; James Blanchard; Michael Piatak; Jeffrey D. Lifson; Gabriela Paglini; Natalia Teleshova; Thomas M. Zydowsky; Melissa Robbiani; José A. Fernández-Romero

Prevalent infection with human herpes simplex 2 (HSV-2) or human papillomavirus (HPV) is associated with increased human immunodeficiency virus (HIV) acquisition. Microbicides that target HIV as well as these sexually transmitted infections (STIs) may more effectively limit HIV incidence. Previously, we showed that a microbicide gel (MZC) containing MIV-150, zinc acetate (ZA) and carrageenan (CG) protected macaques against simian-human immunodeficiency virus (SHIV-RT) infection and that a ZC gel protected mice against HSV-2 infection. Here we evaluated a modified MZC gel (containing different buffers, co-solvents, and preservatives suitable for clinical testing) against both vaginal and rectal challenge of animals with SHIV-RT, HSV-2 or HPV. MZC was stable and safe in vitro (cell viability and monolayer integrity) and in vivo (histology). MZC protected macaques against vaginal (p<0.0001) SHIV-RT infection when applied up to 8 hours (h) prior to challenge. When used close to the time of challenge, MZC prevented rectal SHIV-RT infection of macaques similar to the CG control. MZC significantly reduced vaginal (p<0.0001) and anorectal (p = 0.0187) infection of mice when 106 pfu HSV-2 were applied immediately after vaginal challenge and also when 5×103 pfu were applied between 8 h before and 4 h after vaginal challenge (p<0.0248). Protection of mice against 8×106 HPV16 pseudovirus particles (HPV16 PsV) was significant for MZC applied up to 24 h before and 2 h after vaginal challenge (p<0.0001) and also if applied 2 h before or after anorectal challenge (p<0.0006). MZC provides a durable window of protection against vaginal infection with these three viruses and, against HSV-2 and HPV making it an excellent candidate microbicide for clinical use.


Antimicrobial Agents and Chemotherapy | 2013

A Modified Zinc Acetate Gel, a Potential Nonantiretroviral Microbicide, Is Safe and Effective against Simian-Human Immunodeficiency Virus and Herpes Simplex Virus 2 Infection In Vivo

Jessica Kenney; Aixa Rodriguez; Larisa Kizima; Samantha Seidor; Radhika Menon; Ninochka Jean-Pierre; Pavel Pugach; Keith Levendosky; Nina Derby; Agegnehu Gettie; James Blanchard; Michael Piatak; Jeffrey D. Lifson; Gabriela Paglini; Thomas M. Zydowsky; Melissa Robbiani; José A. Fernández Romero

ABSTRACT We previously showed that a prototype gel comprising zinc acetate (ZA) in carrageenan (CG) protected mice against vaginal and rectal herpes simplex virus 2 (HSV-2) challenge as well as macaques against vaginal simian-human immunodeficiency virus reverse transcriptase (SHIV-RT) challenge. In this work, we modified buffers and cosolvents to obtain a stable, nearly iso-osmolal formulation and evaluated its safety and efficacy against SHIV-RT and HSV-2. In vitro toxicity to lactobacilli and Candida albicans was determined. Macaques were given daily doses of ZA and CG (ZA/CG) or CG alone vaginally for 14 days and challenged with SHIV-RT 24 h later. Mice were challenged vaginally or rectally with HSV-2 immediately after a single gel treatment to measure efficacy or vaginally 12 h after daily gel treatment for 7 days to evaluate the gels impact on susceptibility to HSV-2 infection. The modified ZA/CG neither affected the viability of lactobacilli or C. albicans nor enhanced vaginal HSV-2 infection after daily ZA/CG treatment. Vaginal SHIV-RT infection of macaques was reduced by 66% (P = 0.006) when macaques were challenged 24 h after the last dose of gel. We observed 60% to 80% uninfected mice after vaginal (P < 0.0001) and rectal (P = 0.008) high-dose HSV-2 challenge. The modified ZA/CG gel is safe and effective in animal models and represents a potential candidate to limit the transmission of HIV and HSV-2.


PLOS ONE | 2014

Sex Hormones Selectively Impact the Endocervical Mucosal Microenvironment: Implications for HIV Transmission

Diana Goode; Meropi Aravantinou; Sebastian Jarl; Rosaline Truong; Nina Derby; Natalia Guerra-Pérez; Jessica Kenney; James Blanchard; Agegnehu Gettie; Melissa Robbiani; Elena Martinelli

Several studies suggest that progesterone and estrogens may affect HIV transmission in different, possibly opposing ways. Nonetheless, a direct comparison of their effects on the mucosal immune system has never been done. We hypothesize that sex hormones might impact the availability of cells and immune factors important in early stages of mucosal transmission, and, in doing so influence the risk of HIV acquisition. To test this hypothesis, we employed 15 ovarectomized rhesus macaques: 5 were treated with Depot Medroxy Progesterone Acetate (DMPA), 6 with 17-β estradiol (E2) and 4 were left untreated. All animals were euthanized 5 weeks after the initiation of hormone treatment, a time post-DMPA injection associated with high susceptibility to SIV infection. We found that DMPA-treated macaques exhibited higher expression of integrin α4β7 (α4β7) on CD4+ T cells, the gut homing receptor and a marker of cells highly susceptible to HIV, in the endocervix than did the E2-treated animals. In contrast, the frequency of CCR5+ CD4+ T cells in DMPA-treated macaques was higher than in the E2-treated group in vaginal tissue, but lower in endocervix. α4β7 expression on dendritic cells (DCs) was higher in the DMPA-treated group in the endocervical tissue, but lower in vaginal tissue and on blood DCs compared with the E2-treated animals. Soluble MAdCAM-1, the α4β7 ligand, was present in the vaginal fluids of the control and E2-treated groups, but absent in the fluids from DMPA-treated animals. Both hormones modulated the expression and release of inflammatory factors and modified the distribution of sialomucins in the endocervix. In summary, we found that sex hormones profoundly impact mucosal immune factors that are directly implicated in HIV transmission. The effect is particularly significant in the endocervix. This may increase our understanding of the potential hormone-driven modulation of HIV susceptibility and potentially guide contraceptive policies in high-risk settings.


Journal of Controlled Release | 2015

A novel intravaginal ring to prevent HIV-1, HSV-2, HPV, and unintended pregnancy

Shweta Ugaonkar; Asa Wesenberg; Jolanta Wilk; Samantha Seidor; Olga Mizenina; Larisa Kizima; Aixa Rodriguez; Shimin Zhang; Keith Levendosky; Jessica Kenney; Meropi Aravantinou; Nina Derby; Brooke Grasperge; Agegnehu Gettie; James Blanchard; Narender Kumar; Kevin Roberts; Melissa Robbiani; José A. Fernández-Romero; Thomas M. Zydowsky

Women urgently need a self-initiated, multipurpose prevention technology (MPT) that simultaneously reduces their risk of acquiring HIV-1, HSV-2, and HPV (latter two associated with increased risk of HIV-1 acquisition) and prevents unintended pregnancy. Here, we describe a novel core-matrix intravaginal ring (IVR), the MZCL IVR, which effectively delivered the MZC combination microbicide and a contraceptive. The MZCL IVR contains four active pharmaceutical ingredients (APIs): MIV-150 (targets HIV-1), zinc acetate (ZA; targets HIV-1 and HSV-2), carrageenan (CG; targets HPV and HSV-2), and levonorgestrel (LNG; targets unintended pregnancy). The elastomeric IVR body (matrix) was produced by hot melt extrusion of the non-water swellable elastomer, ethylene vinyl acetate (EVA-28), containing the hydrophobic small molecules, MIV-150 and LNG. The solid hydrophilic core, embedded within the IVR by compression, contained the small molecule ZA and the macromolecule CG. Hydrated ZA/CG from the core was released by diffusion via a pore on the IVR while the MIV-150/LNG diffused from the matrix continuously for 94 days (d) in vitro and up to 28 d (study period) in macaques. The APIs released in vitro and in vivo were active against HIV-1ADA-M, HSV-2, and HPV16 PsV in cell-based assays. Serum LNG was at levels associated with local contraceptive effects. The results demonstrate proof-of-concept of a novel core-matrix IVR for sustained and simultaneous delivery of diverse molecules for the prevention of HIV, HSV-2 and HPV acquisition, as well as unintended pregnancy.


Current Opinion in Hiv and Aids | 2011

Myeloid dendritic cells in HIV-1 infection.

Nina Derby; Elena Martinelli; Melissa Robbiani

PURPOSE OF REVIEW Myeloid dendritic cells (mDCs) are pivotal players in HIV-1 infection. They promote transmission and spread and at the same time are critical for recognizing HIV-1 and initiating immune responses to fight infection. Notably, their immunostimulatory capabilities can be harnessed to design better HIV-1 vaccines. In this review, advances in these areas of mDC-HIV-1 interactions are summarized. RECENT FINDINGS New insights into HIV-1-induced dysfunction of mDCs and dysfunctional mDC effects on other cell types, as well as novel mechanisms of viral sensing by mDCs and their evasion by HIV-1, have been uncovered. These results emphasize the importance of mDCs in protection against HIV-1 infection. Targeting mDCs with vaccines and tailored adjuvants may improve the quality and anatomical location of elicited immune responses. SUMMARY Understanding the multiplicity of HIV-1-dendritic cell interactions together with the numerous advances in targeted therapy and vaccination will help in the rational design of approaches to treat and block infection.


Expert Review of Anti-infective Therapy | 2013

In search of the optimal delivery method for anti-HIV microbicides: are intravaginal rings the way forward?

Nina Derby; Thomas M. Zydowsky; Melissa Robbiani

© 2013 Expert Reviews Ltd Intravaginal rings are an advantageous microbicide delivery platform Microbicides are urgently needed to help stem the HIV epidemic [1]. With time and resources at a premium, donors, researchers and regulators agree that only the most promising candidates should be pursued (although they do not always agree on how to prioritize them) [2]. Following the realization that microbicides comprising nonspecific inhibitors were not effective [3], the field has focused principally on topical gels and oral pre-exposure prophylaxis containing antiretroviral drugs, especially reverse transcriptase inhibitors (RTIs). Significant protection was achieved in clinical trials of a pericoital 1% tenofovir (TFV) gel (CAPRISA 004) [1] and a pill of Truvada once daily (iPrex) [4], positioning microbicides solidly in the fight against HIV. Nevertheless, the best correlate of microbicide efficacy is drug concentration at the exposure site [5,6]. Low adherence to gel regimens results in sub-therapeutic drug levels in the mucosa [1,5], and oral dosing achieves substantially lower vaginal levels than vaginally applied agents [7]. These factors probably contributed to the failure of the VOICE (topical 1% TFV gel) and FEM-PrEP (oral Truvada) trials [7], and indicate that other HIV prevention strategies are still needed. Intravaginal rings (IVRs) provide an alternative delivery method for topical microbicides. Widely used for contraception and hormone replacement therapy [8], IVRs offer sustained release of active pharmaceutical ingredients (APIs), having the potential for long-acting protection [2,8]. Used discretely, independent of coitus and requiring minimal effort after insertion, IVRs have been accepted by users [9] and may improve adherence over gels [9,10]. Moreover, recent macaque data show that IVRs releasing the nonnucleoside RTI (NNRTI) MIV-150 offer significant protection against HIV reverse transcriptase in a simian immunodeficiency virus background (SHIV-RT) [11], demonstrating the promise of IVRs for reducing HIV transmission.


Drug Delivery and Translational Research | 2017

An intravaginal ring that releases three antiviral agents and a contraceptive blocks SHIV-RT infection, reduces HSV-2 shedding, and suppresses hormonal cycling in rhesus macaques

Nina Derby; Meropi Aravantinou; Jessica Kenney; Shweta Ugaonkar; Asa Wesenberg; Jolanta Wilk; Larisa Kizima; Aixa Rodriguez; Shimin Zhang; Olga Mizenina; Keith Levendosky; Michael L. Cooney; Samantha Seidor; Agegnehu Gettie; Brooke Grasperge; James Blanchard; Michael Piatak; Jeffrey D. Lifson; José A. Fernández-Romero; Thomas M. Zydowsky; Melissa Robbiani

Women globally need access to multipurpose prevention technologies (MPTs) that prevent human immunodeficiency virus (HIV), sexually transmitted infections that increase HIV acquisition/transmission risk, and unintended pregnancy. Seeking an MPT with activity against HIV, herpes simplex virus-2 (HSV-2), and human papillomavirus (HPV), we developed a prototype intravaginal ring (IVR), the MZCL IVR, which released the antiviral agents MIV-150, zinc acetate, and carrageenan (MZC for short) and the contraceptive levonorgestrel (LNG). Previously, we showed that an MZC gel has potent activity against immunodeficiency viruses, HSV-2, and HPV and that the MZCL (MZC with LNG) IVR releases all four components in macaques in vivo at levels associated with efficacy. Vaginal fluid from treated macaques has in vitro activity against HIV, HSV-2, and HPV. Herein, we assessed the ability of the MZCL IVR to protect macaques against repeated co-challenge with HSV-2 and SHIV-RT (simian immunodeficiency virus [SIV] containing the reverse transcriptase gene from HIV) and prevent hormonal cycling. We evaluated in vivo drug release in co-challenged macaques by measuring drug levels in blood and vaginal fluid and residual drug levels in used IVRs. The MZCL IVR significantly prevented SHIV-RT infection, reduced HSV-2 vaginal shedding, and prevented cycling. No non-nucleoside HIV reverse transcriptase inhibitor (NNRTI)-resistant SHIV was detected in macaques that became infected after continuous exposure to MZC from the IVR. Macaques wearing the MZCL IVR also had carrageenan levels in vaginal fluid expected to protect from HPV (extrapolated from mice) and LNG levels in blood associated with contraceptive efficacy. The MZCL IVR is a promising MPT candidate that warrants further development.


Journal of Medical Primatology | 2017

A model of genital herpes simplex virus Type 1 infection in Rhesus Macaques

Meropi Aravantinou; Ines Frank; Géraldine Arrode-Brusés; Moriah L. Szpara; Brooke Grasperge; James Blanchard; Agegnehu Gettie; Nina Derby; Elena Martinelli

Although HSV‐2 is the major cause of genital lesions, HSV‐1 accounts for half of new cases in developed countries.

Collaboration


Dive into the Nina Derby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agegnehu Gettie

Aaron Diamond AIDS Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge