Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nina Dinjaski is active.

Publication


Featured researches published by Nina Dinjaski.


Advanced Functional Materials | 2016

Design of Multistimuli Responsive Hydrogels Using Integrated Modeling and Genetically Engineered Silk–Elastin‐Like Proteins

Wenwen Huang; Anna Tarakanova; Nina Dinjaski; Qin Wang; Xiao-Xia Xia; Ying Chen; Joyce Wong; Markus J. Buehler; David L. Kaplan

Elastomeric, robust, and biocompatible hydrogels are rare, while the need for these types of biomaterials in biomedical-related uses remains high. Here, a new family of genetically engineered silk-elastin copolymers (SELPs) with encoded enzymatic crosslinking sites is developed for a new generation of stimuli-responsive yet robust hydrogels. Input into the designs is guided by simulation, and realized via genetic engineering strategies. The avoidance of gamma irradiation or chemical crosslinking during gel fabrication, in lieu of an enzymatic process, expands the versatility of these new gels for the incorporation of labile proteins and cells. In the present study, the new SELP hydrogels offers sequence dependent, reversible stimuli-responsive features. Their stiffness covers almost the full range of the elasticity of soft tissues. Further, physical modification of the silk domains provided a secondary control point to fine-tune mechanical stiffness while preserving stimuli-responsive features, with implications for a variety of biomedical materials and device needs.


Biotechnology and Bioengineering | 2016

Fibrous proteins: At the crossroads of genetic engineering and biotechnological applications

Sezin Yigit; Nina Dinjaski; David L. Kaplan

Fibrous proteins, such as silk, elastin and collagen are finding broad impact in biomaterial systems for a range of biomedical and industrial applications. Some of the key advantages of biosynthetic fibrous proteins compared to synthetic polymers include the tailorability of sequence, protein size, degradation pattern, and mechanical properties. Recombinant DNA production and precise control over genetic sequence of these proteins allows expansion and fine tuning of material properties to meet the needs for specific applications. We review current approaches in the design, cloning, and expression of fibrous proteins, with a focus on strategies utilized to meet the challenges of repetitive fibrous protein production. We discuss recent advances in understanding the fundamental basis of structure‐function relationships and the designs that foster fibrous protein self‐assembly towards predictable architectures and properties for a range of applications. We highlight the potential of functionalization through genetic engineering to design fibrous protein systems for biotechnological and biomedical applications. Biotechnol. Bioeng. 2016;113: 913–929.


Accounts of Chemical Research | 2017

Synergistic Integration of Experimental and Simulation Approaches for the de Novo Design of Silk-Based Materials

Wenwen Huang; Davoud Ebrahimi; Nina Dinjaski; Anna Tarakanova; Markus J. Buehler; Joyce Wong; David L. Kaplan

Tailored biomaterials with tunable functional properties are crucial for a variety of task-specific applications ranging from healthcare to sustainable, novel bio-nanodevices. To generate polymeric materials with predictive functional outcomes, exploiting designs from nature while morphing them toward non-natural systems offers an important strategy. Silks are Natures building blocks and are produced by arthropods for a variety of uses that are essential for their survival. Due to the genetic control of encoded protein sequence, mechanical properties, biocompatibility, and biodegradability, silk proteins have been selected as prototype models to emulate for the tunable designs of biomaterial systems. The bottom up strategy of material design opens important opportunities to create predictive functional outcomes, following the exquisite polymeric templates inspired by silks. Recombinant DNA technology provides a systematic approach to recapitulate, vary, and evaluate the core structure peptide motifs in silks and then biosynthesize silk-based polymers by design. Post-biosynthesis processing allows for another dimension of material design by controlled or assisted assembly. Multiscale modeling, from the theoretical prospective, provides strategies to explore interactions at different length scales, leading to selective material properties. Synergy among experimental and modeling approaches can provide new and more rapid insights into the most appropriate structure-function relationships to pursue while also furthering our understanding in terms of the range of silk-based systems that can be generated. This approach utilizes nature as a blueprint for initial polymer designs with useful functions (e.g., silk fibers) but also employs modeling-guided experiments to expand the initial polymer designs into new domains of functional materials that do not exist in nature. The overall path to these new functional outcomes is greatly accelerated via the integration of modeling with experiment. In this Account, we summarize recent advances in understanding and functionalization of silk-based protein systems, with a focus on the integration of simulation and experiment for biopolymer design. Spider silk was selected as an exemplary protein to address the fundamental challenges in polymer designs, including specific insights into the role of molecular weight, hydrophobic/hydrophilic partitioning, and shear stress for silk fiber formation. To expand current silk designs toward biointerfaces and stimuli responsive materials, peptide modules from other natural proteins were added to silk designs to introduce new functions, exploiting the modular nature of silk proteins and fibrous proteins in general. The integrated approaches explored suggest that protein folding, silk volume fraction, and protein amino acid sequence changes (e.g., mutations) are critical factors for functional biomaterial designs. In summary, the integrated modeling-experimental approach described in this Account suggests a more rationally directed and more rapid method for the design of polymeric materials. It is expected that this combined use of experimental and computational approaches has a broad applicability not only for silk-based systems, but also for other polymer and composite materials.


RSC Advances | 2016

Influence of silk–silica fusion protein design on silica condensation in vitro and cellular calcification

Robyn Plowright; Nina Dinjaski; Shun Zhou; David J. Belton; David L. Kaplan; Carole C. Perry

Biomaterial design via genetic engineering can be utilized for the rational functionalization of proteins to promote biomaterial integration and tissue regeneration. Spider silk has been extensively studied for its biocompatibility, biodegradability and extraordinary material properties. As a protein-based biomaterial, recombinant DNA derived derivatives of spider silks have been modified with biomineralization domains which lead to silica deposition and potentially accelerated bone regeneration. However, the influence of the location of the R5 (SSKKSGSYSGSKGSKRRIL) silicifying domain fused with the spider silk protein sequence on the biosilicification process remains to be determined. Here we designed two silk-R5 fusion proteins that differed in the location of the R5 peptide, C- vs. N-terminus, where the spider silk domain consisted of a 15mer repeat of a 33 amino acid consensus sequence of the major ampullate dragline Spidroin 1 from Nephila clavipes (SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQGT). The chemical, physical and silica deposition properties of these recombinant proteins were assessed and compared to a silk 15mer control without the R5 present. The location of the R5 peptide did not have a significant effect on wettability and surface energies, while the C-terminal location of the R5 promoted more controlled silica precipitation, suggesting differences in protein folding and possibly different access to charged amino acids that drive the silicification process. Further, cell compatibility in vitro, as well as the ability to promote human bone marrow derived mesenchymal stem cell (hMSC) differentiation were demonstrated for both variants of the fusion proteins.


ACS Biomaterials Science & Engineering | 2017

Predicting Silk Fiber Mechanical Properties through Multiscale Simulation and Protein Design

Nae-Gyune Rim; Erin G. Roberts; Davoud Ebrahimi; Nina Dinjaski; Matthew M. Jacobsen; Zaira Martín-Moldes; Markus J. Buehler; David L. Kaplan; Joyce Wong

Silk is a promising material for biomedical applications, and much research is focused on how application-specific, mechanical properties of silk can be designed synthetically through proper amino acid sequences and processing parameters. This protocol describes an iterative process between research disciplines that combines simulation, genetic synthesis, and fiber analysis to better design silk fibers with specific mechanical properties. Computational methods are used to assess the protein polymer structure as it forms an interconnected fiber network through shearing and how this process affects fiber mechanical properties. Model outcomes are validated experimentally with the genetic design of protein polymers that match the simulation structures, fiber fabrication from these polymers, and mechanical testing of these fibers. Through iterative feedback between computation, genetic synthesis, and fiber mechanical testing, this protocol will enable a priori prediction capability of recombinant material mechanical properties via insights from the resulting molecular architecture of the fiber network based entirely on the initial protein monomer composition. This style of protocol may be applied to other fields where a research team seeks to design a biomaterial with biomedical application-specific properties. This protocol highlights when and how the three research groups (simulation, synthesis, and engineering) should be interacting to arrive at the most effective method for predictive design of their material.


Acta Biomaterialia | 2017

Osteoinductive recombinant silk fusion proteins for bone regeneration

Nina Dinjaski; Robyn Plowright; Shun Zhou; David J. Belton; Carole C. Perry; David L. Kaplan

Protein polymers provide a unique opportunity for tunable designs of material systems due to the genetic basis of sequence control. To address the challenge of biomineralization interfaces with protein based materials, we genetically engineered spider silks to design organic-inorganic hybrid systems. The spider silk inspired domain (SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQGT)15 served as an organic scaffold to control material stability and to allow multiple modes of processing, whereas the hydroxyapatite binding domain VTKHLNQISQSY (VTK), provided control over osteogenesis. The VTK domain was fused either to the N-, C- or both terminals of the spider silk domain to understand the effect of position on material properties and mineralization. The addition of the VTK domain to silk did not affect the physical properties of the silk recombinant constructs, but it had a critical role in the induction of biomineralization. When the VTK domain was placed on both the C- and N-termini the formation of crystalline hydroxyapatite was significantly increased. In addition, all of the recombinant proteins in film format supported the growth and proliferation of human mesenchymal stem cells (hMSCs). Importantly, the presence of the VTK domain enhanced osteoinductive properties up to 3-fold compared to the control (silk alone without VTK). Therefore, silk-VTK fusion proteins have been shown suitable for mineralization and functionalization for specific biomedical applications. STATEMENT OF SIGNIFICANCE Organic-inorganic interfaces are integral to biomaterial functions in many areas of repair and regeneration. Several protein polymers have been investigated for this purpose. Despite their success the limited options to fine-tune their material properties, degradation patterns and functionalize them for each specific biomedical application limits their application. Various studies have shown that the biological performance of such proteins can be improved by genetic engineering. The present study provides data relating protein design parameters and functional outcome quantified by biomineralization and human mesenchymal stem cell differentiation. As such, it helps the design of osteoinductive recombinant biomaterials for bone regeneration.


Macromolecular Bioscience | 2017

Effect of Terminal Modification on the Molecular Assembly and Mechanical Properties of Protein-Based Block Copolymers

Matthew M. Jacobsen; Olena Tokareva; Davoud Ebrahimi; Wenwen Huang; Shengjie Ling; Nina Dinjaski; David Li; Marc Simon; Cristian Staii; Markus J. Buehler; David L. Kaplan; Joyce Wong

Accurate prediction and validation of the assembly of bioinspired peptide sequences into fibers with defined mechanical characteristics would aid significantly in designing and creating materials with desired properties. This process may also be utilized to provide insight into how the molecular architecture of many natural protein fibers is assembled. In this work, computational modeling and experimentation are used in tandem to determine how peptide terminal modification affects a fiber-forming core domain. Modeling shows that increased terminal molecular weight and hydrophilicity improve peptide chain alignment under shearing conditions and promote consolidation of semicrystalline domains. Mechanical analysis shows acute improvements to strength and elasticity, but significantly reduced extensibility and overall toughness. These results highlight an important entropic function that terminal domains of fiber-forming peptides exhibit as chain alignment promoters, which ultimately has notable consequences on the mechanical behavior of the final fiber products.


Advanced Functional Materials | 2018

Intracellular Pathways Involved in Bone Regeneration Triggered by Recombinant Silk–Silica Chimeras

Zaira Martín-Moldes; Davoud Ebrahimi; Robyn Plowright; Nina Dinjaski; Carole C. Perry; Markus J. Buehler; David L. Kaplan

Biomineralization at the organic-inorganic interface is critical to many biology material functions in vitro and in vivo. Recombinant silk-silica fusion peptides are organic-inorganic hybrid material systems that can be effectively used to study and control biologically-mediated mineralization due to the genetic basis of sequence control. However, to date, the mechanisms by which these functionalized silk-silica proteins trigger the differentiation of human mesenchymal stem cells (hMSCs) to osteoblasts remain unknown. To address this challenge, we analyzed silk-silica surfaces for silica-hMSC receptor binding and activation, and the intracellular pathways involved in the induction of osteogenesis on these bioengineered biomaterials. The induction of gene expression of αVβ3 integrin, all three Mitogen-activated Protein Kinsases (MAPKs) as well as c-Jun, Runt-related Transcription Factor 2 (Runx2) and osteoblast marker genes was demonstrated upon growth of the hMSCs on the silk-silica materials. This induction of key markers of osteogenesis correlated with the content of silica on the materials. Moreover, computational simulations were performed for silk/silica-integrin binding which showed activation of αVβ3 integrin in contact with silica. This integrated computational and experimental approach provides insight into interactions that regulate osteogenesis towards more efficient biomaterial designs.


Archive | 2018

Recursive Directional Ligation Approach for Cloning Recombinant Spider Silks

Nina Dinjaski; Wenwen Huang; David L. Kaplan

Recent advances in genetic engineering have provided a route to produce various types of recombinant spider silks. Different cloning strategies have been applied to achieve this goal (e.g., concatemerization, step-by-step ligation, recursive directional ligation). Here we describe recursive directional ligation as an approach that allows for facile modularity and control over the size of the genetic cassettes. This approach is based on sequential ligation of genetic cassettes (monomers) where the junctions between them are formed without interrupting key gene sequences with additional base pairs.


Journal of Tissue Engineering and Regenerative Medicine | 2018

Predicting rates of in vivo degradation of recombinant spider silk proteins.

Nina Dinjaski; Davoud Ebrahimi; Zhao Qin; Jodie E.M. Giordano; Shengjie Ling; J Markus Buehler; David L. Kaplan

Developing fundamental tools and insight into biomaterial designs for predictive functional outcomes remains critical for the field. Silk is a promising candidate as a biomaterial for tissue engineering scaffolds, particularly where high mechanical loads or slow rates of degradation are desirable. Although bioinspired synthetic spider silks are feasible biomaterials for this purpose, insight into how well the degradation rate can be programmed by fine tuning the sequence remains to be determined. Here we integrated experimental approaches and computational modelling to investigate the degradation of two bioengineered spider silk block copolymers, H(AB)2 and H(AB)12, which were designed based on the consensus domains of Nephila clavipes dragline silk. The effect of protein chain length and secondary structure on degradation was analysed in vivo. The degradation rate of H(AB)12, the silk with longer chain length/higher molecular weight, and higher crystallinity, was slower when compared to H(AB)2. Using full atomistic modelling, it was determined that the faster degradation of H(AB)2 was due to the lower folded molecular structure of the silk and the greater accessibility to solvent. Comparison of the specific surface areas of proteins via modelling showed that higher exposure of random coil and lower exposure of ordered domains in H(AB)2 led to the more reactive silk with a higher degradation rate when compared with H(AB)12, as validated by the experimental results. The study, based on two simple silk designs demonstrated that the control of sequence can lead to programmable degradation rates for these biomaterials, providing a suitable model system with which to study variables in protein polymer design to predict degradation rates in vivo. This approach should reduce the use of animal screening, while also accelerating translation of such biomaterials for repair and regenerative systems. Copyright

Collaboration


Dive into the Nina Dinjaski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Davoud Ebrahimi

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Markus J. Buehler

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joyce Wong

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carole C. Perry

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar

Robyn Plowright

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar

Anna Tarakanova

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge