Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nina Heldring is active.

Publication


Featured researches published by Nina Heldring.


Journal of extracellular vesicles | 2015

Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting

Oscar P. B. Wiklander; Joel Z. Nordin; Aisling O'Loughlin; Ylva Gustafsson; Giulia Corso; Imre Mäger; Pieter Vader; Yi Lee; Helena Sork; Yiqi Seow; Nina Heldring; Lydia Alvarez-Erviti; C. I. Edvard Smith; Katarina Le Blanc; Paolo Macchiarini; Philipp Jungebluth; Matthew J.A. Wood; Samir El Andaloussi

Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in a diverse range of biological processes. For future therapeutic applications and for EV biology research in general, understanding the in vivo fate of EVs is of utmost importance. Here we studied biodistribution of EVs in mice after systemic delivery. EVs were isolated from 3 different mouse cell sources, including dendritic cells (DCs) derived from bone marrow, and labelled with a near-infrared lipophilic dye. Xenotransplantation of EVs was further carried out for cross-species comparison. The reliability of the labelling technique was confirmed by sucrose gradient fractionation, organ perfusion and further supported by immunohistochemical staining using CD63-EGFP probed vesicles. While vesicles accumulated mainly in liver, spleen, gastrointestinal tract and lungs, differences related to EV cell origin were detected. EVs accumulated in the tumour tissue of tumour-bearing mice and, after introduction of the rabies virus glycoprotein-targeting moiety, they were found more readily in acetylcholine-receptor-rich organs. In addition, the route of administration and the dose of injected EVs influenced the biodistribution pattern. This is the first extensive biodistribution investigation of EVs comparing the impact of several different variables, the results of which have implications for the design and feasibility of therapeutic studies using EVs.


Nature | 2013

The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy

Jens Füllgrabe; Melinda A. Lynch-Day; Nina Heldring; Wenbo Li; Robert B. Struijk; Qi Ma; Ola Hermanson; Michael G. Rosenfeld; Daniel J. Klionsky; Bertrand Joseph

Autophagy is an evolutionarily conserved catabolic process involved in several physiological and pathological processes. Although primarily cytoprotective, autophagy can also contribute to cell death; it is thus important to understand what distinguishes the life or death decision in autophagic cells. Here we report that induction of autophagy is coupled to reduction of histone H4 lysine 16 acetylation (H4K16ac) through downregulation of the histone acetyltransferase hMOF (also called KAT8 or MYST1), and demonstrate that this histone modification regulates the outcome of autophagy. At a genome-wide level, we find that H4K16 deacetylation is associated predominantly with the downregulation of autophagy-related genes. Antagonizing H4K16ac downregulation upon autophagy induction results in the promotion of cell death. Our findings establish that alteration in a specific histone post-translational modification during autophagy affects the transcriptional regulation of autophagy-related genes and initiates a regulatory feedback loop, which serves as a key determinant of survival versus death responses upon autophagy induction.


Stem Cells | 2014

Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties

Guido Moll; Jessica J. Alm; Lindsay Catrina Davies; Lena von Bahr; Nina Heldring; Lillemor Stenbeck-Funke; Osama A. Hamad; Robin Hinsch; Lech Ignatowicz; Matthew Locke; Helena Lönnies; John D. Lambris; Yuji Teramura; Kristina Nilsson-Ekdahl; Bo Nilsson; Katarina Le Blanc

We have recently reported that therapeutic mesenchymal stromal cells (MSCs) have low engraftment and trigger the instant blood mediated inflammatory reaction (IBMIR) after systemic delivery to patients, resulting in compromised cell function. In order to optimize the product, we compared the immunomodulatory, blood regulatory, and therapeutic properties of freeze‐thawed and freshly harvested cells. We found that freeze‐thawed MSCs, as opposed to cells harvested from continuous cultures, have impaired immunomodulatory and blood regulatory properties. Freeze‐thawed MSCs demonstrated reduced responsiveness to proinflammatory stimuli, an impaired production of anti‐inflammatory mediators, increased triggering of the IBMIR, and a strong activation of the complement cascade compared to fresh cells. This resulted in twice the efficiency in lysis of thawed MSCs after 1 hour of serum exposure. We found a 50% and 80% reduction in viable cells with freshly detached as opposed to thawed in vitro cells, indicating a small benefit for fresh cells. In evaluation of clinical response, we report a trend that fresh cells, and cells of low passage, demonstrate improved clinical outcome. Patients treated with freshly harvested cells in low passage had a 100% response rate, twice the response rate of 50% observed in a comparable group of patients treated with freeze‐thawed cells at higher passage. We conclude that cryobanked MSCs have reduced immunomodulatory and blood regulatory properties directly after thawing, resulting in faster complement‐mediated elimination after blood exposure. These changes seem to be paired by differences in therapeutic efficacy in treatment of immune ailments after hematopoietic stem cell transplantation. Stem Cells 2014;32:2430–2442


Journal of Biological Chemistry | 2007

Structural insights into corepressor recognition by antagonist- bound estrogen receptors

Nina Heldring; Tanya Pawson; Donald P. McDonnell; Eckardt Treuter; Jan Åke Gustafsson; A.C.W. Pike

Direct recruitment of transcriptional corepressors to estrogen receptors (ER) is thought to contribute to the tissue-specific effects of clinically important ER antagonists. Here, we present the crystal structures of two affinity-selected peptides in complex with antagonist-bound ERα ligand-binding domain. Both peptides adopt helical conformations, bind along the activation function 2 coregulator interaction surface, and mimic corepressor (CoRNR) sequence motif binding. Peptide binding is weak in a wild-type context but significantly enhanced by removal of ER helix 12. This region contains a previously unrecognized CoRNR motif that is able to compete with corepressors for binding to activation function 2, thereby providing a structural explanation for the poor ability of ER to directly interact with classical corepressors. Furthermore, the ability of other sequence motifs to mimic corepressor binding raises the possibility that coregulators do not necessarily require CoRNR motifs for direct recruitment to antagonist-bound ER.


Molecular and Cellular Biology | 2004

Identification of Tamoxifen-Induced Coregulator Interaction Surfaces within the Ligand-Binding Domain of Estrogen Receptors

Nina Heldring; Maria Nilsson; Benjamin M. Buehrer; Eckardt Treuter; Jan Åke Gustafsson

ABSTRACT Tamoxifen is a selective estrogen receptor (ER) modulator that is clinically used as an antagonist to treat estrogen-dependent breast cancers but displays unwanted agonistic effects in other tissues. Previous studies on ERα have delineated a role of the N-terminal activation function AF-1 in mediating the agonistic effects of tamoxifen, while the mechanisms for how ERβ mediates tamoxifen action remain to be elucidated. As peptides can be used to detect distinct receptor conformations and binding surfaces for coactivators and corepressors, we attempted in this study to identify previously unrecognized peptides that interact specifically with ERs in the presence of tamoxifen. We identified two distinct peptides among others that are highly selective for tamoxifen-bound ERα or ERβ. Domain mapping and mutation analysis suggest that these peptides recognize a novel tamoxifen-induced binding surface within the C-terminal ligand-binding domain that is distinct from the agonist-induced AF-2 surface. Peptide expression specifically inhibited transcriptional ER activity in response to tamoxifen, presumably by preventing the binding of endogenous coactivators. Moreover, tamoxifen-responsive and ER subtype-selective coactivators were engineered by replacing the LXXLL motifs in the coactivator TIF2 with either of the two peptides. Finally, our results indicate that related coactivators may act via the novel tamoxifen-induced binding surface, referred to as AF-T, allowing us to propose a revised model of tamoxifen agonism.


Developmental Biology | 2010

Notch induces cyclin-D1-dependent proliferation during a specific temporal window of neural differentiation in ES cells

Debashish Das; Fredrik Lanner; Heather Main; Emma R. Andersson; Olaf Bergmann; Cecilia Sahlgren; Nina Heldring; Ola Hermanson; Emil M. Hansson; Urban Lendahl

The Notch signaling pathway controls cell fate choices at multiple steps during cell lineage progression. To produce the cell fate choice appropriate for a particular stage in the cell lineage, Notch signaling needs to interpret the cell context information for each stage and convert it into the appropriate cell fate instruction. The molecular basis for this temporal context-dependent Notch signaling output is poorly understood, and to study this, we have engineered a mouse embryonic stem (ES) cell line, in which short pulses of activated Notch can be produced at different stages of in vitro neural differentiation. Activation of Notch signaling for 6h specifically at day 3 during neural induction in the ES cells led to significantly enhanced cell proliferation, accompanied by Notch-mediated activation of cyclin D1 expression. A reduction of cyclin-D1-expressing cells in the developing CNS of Notch signaling-deficient mouse embryos was also observed. Expression of a dominant negative form of cyclin D1 in the ES cells abrogated the Notch-induced proliferative response, and, conversely, a constitutively active form of cyclin D1 mimicked the effect of Notch on cell proliferation. In conclusion, the data define a novel temporal context-dependent function of Notch and a critical role for cyclin D1 in the Notch-induced proliferation in ES cells.


PLOS ONE | 2010

Fatty Acids Derived from Royal Jelly Are Modulators of Estrogen Receptor Functions

Paraskevi Moutsatsou; Zoi Papoutsi; Eva Kassi; Nina Heldring; Chunyan Zhao; Anna Tsiapara; Eleni Melliou; George P. Chrousos; Ioanna Chinou; Andrey Karshikoff; Lennart Nilsson; Karin Dahlman-Wright

Royal jelly (RJ) excreted by honeybees and used as a nutritional and medicinal agent has estrogen-like effects, yet the compounds mediating these effects remain unidentified. The possible effects of three RJ fatty acids (FAs) (10-hydroxy-2-decenoic-10H2DA, 3,10-dihydroxydecanoic-3,10DDA, sebacic acid-SA) on estrogen signaling was investigated in various cellular systems. In MCF-7 cells, FAs, in absence of estradiol (E2), modulated the estrogen receptor (ER) recruitment to the pS2 promoter and pS2 mRNA levels via only ERβ but not ERα, while in presence of E2 FAs modulated both ERβ and ERα. Moreover, in presence of FAs, the E2-induced recruitment of the EAB1 co-activator peptide to ERα is masked and the E2-induced estrogen response element (ERE)-mediated transactivation is inhibited. In HeLa cells, in absence of E2, FAs inhibited the ERE-mediated transactivation by ERβ but not ERα, while in presence of E2, FAs inhibited ERE-activity by both ERβ and ERα. Molecular modeling revealed favorable binding of FAs to ERα at the co-activator-binding site, while binding assays showed that FAs did not bind to the ligand-binding pocket of ERα or ERβ. In KS483 osteoblasts, FAs, like E2, induced mineralization via an ER-dependent way. Our data propose a possible molecular mechanism for the estrogenic activities of RJs components which, although structurally entirely different from E2, mediate estrogen signaling, at least in part, by modulating the recruitment of ERα, ERβ and co-activators to target genes.


Stem Cells Translational Medicine | 2015

In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome

Oscar E. Simonson; Dimitrios Mougiakakos; Nina Heldring; Giulio Bassi; H. Johansson; Magnus Dalén; Regina Jitschin; Sergey Rodin; Matthias Corbascio; Samir El Andaloussi; Oscar P. B. Wiklander; Joel Z. Nordin; Johan Karl Olov Skog; Charlotte Romain; Tina Koestler; Laila Hellgren-Johansson; Petter Schiller; Per-Olof Joachimsson; Hans Hägglund; Mattias Mattsson; Janne Lehtiö; Omid R. Faridani; Rickard Sandberg; Olle Korsgren; Mauro Krampera; Daniel J. Weiss; Karl-Henrik Grinnemo; Katarina Le Blanc

Mesenchymal stromal cells (MSCs) have been investigated as a treatment for various inflammatory diseases because of their immunomodulatory and reparative properties. However, many basic questions concerning their mechanisms of action after systemic infusion remain unanswered. We performed a detailed analysis of the immunomodulatory properties and proteomic profile of MSCs systemically administered to two patients with severe refractory acute respiratory distress syndrome (ARDS) on a compassionate use basis and attempted to correlate these with in vivo anti‐inflammatory actions. Both patients received 2 × 106 cells per kilogram, and each subsequently improved with resolution of respiratory, hemodynamic, and multiorgan failure. In parallel, a decrease was seen in multiple pulmonary and systemic markers of inflammation, including epithelial apoptosis, alveolar‐capillary fluid leakage, and proinflammatory cytokines, microRNAs, and chemokines. In vitro studies of the MSCs demonstrated a broad anti‐inflammatory capacity, including suppression of T‐cell responses and induction of regulatory phenotypes in T cells, monocytes, and neutrophils. Some of these in vitro potency assessments correlated with, and were relevant to, the observed in vivo actions. These experiences highlight both the mechanistic information that can be gained from clinical experience and the value of correlating in vitro potency assessments with clinical effects. The findings also suggest, but do not prove, a beneficial effect of lung protective strategies using adoptively transferred MSCs in ARDS. Appropriate randomized clinical trials are required to further assess any potential clinical efficacy and investigate the effects on in vivo inflammation.


Stem Cells | 2017

Mesenchymal Stromal Cell Secretion of Programmed Death-1 Ligands Regulates T Cell Mediated Immunosuppression

Lindsay Catrina Davies; Nina Heldring; Nadir Kadri; Katarina Le Blanc

Mesenchymal stromal cells (MSCs) exert broad immunosuppressive potential, modulating the activity of cells of innate and adaptive immune systems. As MSCs become accepted as a therapeutic option for the treatment of immunological disorders such as Graft versus Host Disease, our need to understand the intricate details by which they exert their effects is crucial. Programmed death‐1 (PD‐1) is an important regulator in T cell activation and homeostatic control. It has been reported that this pathway may be important in contact‐dependent mediated immunomodulation by MSCs. The aim of this study was to establish whether MSCs, in addition to their cell‐surface expression, are able to secrete PD‐1 ligands (PD‐L1 and PD‐L2) and their potential importance in modulating contact‐independent mechanisms of MSC immunosuppression. Here we report that MSCs express and secrete PD‐L1 and PD‐L2 and that this is regulated by exposure to interferon γ and tumor necrosis factor α. MSCs, via their secretion of PD‐1 ligands, suppress the activation of CD4+ T cells, downregulate interleukin‐2 secretion and induce irreversible hyporesponsiveness and cell death. Suppressed T cells demonstrated a reduction in AKT phosphorylation at T308 and a subsequent increase in FOXO3 expression that could be reversed with blockade of PD‐L1. In conclusion, we demonstrate for the first time, that MSCs are able to secrete PD‐1 ligands, with this being the first known report of a biological role for PD‐L2 in MSCs. These soluble factors play an important role in modulating immunosuppressive effects of MSCs directly on T cell behavior and induction of peripheral tolerance. Stem Cells 2017;35:766–776


Autophagy | 2014

Cracking the survival code: Autophagy-related histone modifications

Jens Füllgrabe; Nina Heldring; Ola Hermanson; Bertrand Joseph

Modifications of histones, the chief protein components of the chromatin, have emerged as critical regulators of life and death. While the “apoptotic histone code” came to light a few years ago, accumulating evidence indicates that autophagy, a cell survival pathway, is also heavily regulated by histone-modifying proteins. In this review we describe the emerging “autophagic histone code” and the role of histone modifications in the cellular life vs. death decision.

Collaboration


Dive into the Nina Heldring's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katarina Le Blanc

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge