Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nina L. Suresh is active.

Publication


Featured researches published by Nina L. Suresh.


international conference of the ieee engineering in medicine and biology society | 2011

Motor Unit Number Reductions in Paretic Muscles of Stroke Survivors

Xiaoyan Li; Ying-Chih Wang; Nina L. Suresh; William Z. Rymer; Ping Zhou

The objective of this study is to assess whether there is evidence of spinal motoneuron loss in paretic muscles of stroke survivors, using an index measurement called motor unit number index (MUNIX). MUNIX, a recently developed novel neurophysiological technique, provides an index proportional to the number of motor units in a muscle, but not necessarily an accurate absolute count. The MUNIX technique was applied to the first dorsal interosseous (FDI) muscle bilaterally in nine stroke subjects. The area and power of the maximum M-wave and the interference pattern electromyogram (EMG) at different contraction levels were used to calculate the MUNIX. A motor unit size index (MUSizelndex) was also calculated using maximum M-wave recording and the MUNIX values. We observed a significant decrease in both maximum M-wave amplitude and MUNIX values in the paretic FDI muscles, as compared with the contralateral muscles. Across all subjects, the maximum M-wave amplitude was 6.4 ± 2.3 mV for the paretic muscles and 9.7 ± 2.0 mV for the contralateral muscles (p <; 0.001). These measurements, in combination with voluntary EMG recordings, resulted in the MUNIX value of 109 ± 53 for the paretic muscles, much lower than the MUNIX value of 153 ± 38 for the contralateral muscles (p <; 0.01). No significant difference was found in MUSizelndex values between the paretic and contralateral muscles. However, the range of MUSizelndex values was slightly wider for paretic muscles (48.8-93.3 μV) than the contralateral muscles (51.7-84.4 μV). The findings from the index measurements provide further evidence of spinal motoneuron loss after a hemispheric brain lesion.


Journal of Neurophysiology | 2013

Motor unit pool organization examined via spike-triggered averaging of the surface electromyogram

Xiaogang Hu; William Z. Rymer; Nina L. Suresh

Voluntary muscle force control is accomplished both by recruitment of motor units (MUs) and by firing rate modulation of active MUs. Typically, MU recruitment and firing rate organization is assessed using piecemeal intramuscular recordings drawn from different experiments, or even from different subjects. As a consequence, it is often difficult to assemble a systematic description of the relations between the different MU properties relevant to the control of muscle force. To address this gap, the objective of our current study was to characterize recruitment and firing rate organization of multiple MUs of differing action potential size, recorded simultaneously from the first dorsal interosseous muscle of intact human subjects, using a recently developed surface electromyogram (EMG) sensor array recording and decomposition system (Delsys). We sought to assess the relation between putative MU size and the recruitment and firing properties for these MUs, recorded at different muscle contraction levels. Spike-triggered averaging (STA) of the surface EMG was performed to estimate the action potential sizes using the firing times of discriminated MUs as the event triggers. The results show that the size principle, which relates MU size to recruitment rank order, was clearly evident during individual force contractions. In addition, the mean firing rate across MUs decreased with increasing size of the MU action potential and was also inversely proportional to the recruitment threshold force. We propose that surface EMG recordings together with advanced decomposition systems, combined with STA methods, may provide an efficient way to systematically examine MU pool organizational properties.


Annals of Biomedical Engineering | 2007

Model Based Sensitivity Analysis of EMG–Force Relation with Respect to Motor Unit Properties: Applications to Muscle Paresis in Stroke

Ping Zhou; Nina L. Suresh; William Z. Rymer

The sensitivity of the electromyogram (EMG)–force relation to changes in motoneuron and muscle properties was explored using a simulation approach, and by applying existing motoneuron pool, muscle force, and surface EMG models. The simulation results indicate that several factors contribute potently to known changes in the EMG–force relation in paretic stroke muscles. First, compression of the motor unit recruitment range with respect to the injected current tends to generate greater EMG amplitude at a given force, and to produce a highly nonlinear EMG–force relation. The overall mean slope of the EMG–force relation tends to be flatter, primarily because of this non-linear behavior. Second, with reductions of the mean motor unit firing rates, the slope of the EMG–force relation also tends to increase especially as the mean firing rates dropped substantially below the motor unit fusion frequency. Finally, similar effects were observed with a reduction in the number of motor units, and with variation in motor unit contractile properties, which also altered the EMG–force relation. These findings provide new insight toward our understanding of experimental EMG–force relations in both normal and pathological states, such as the abnormal EMG–force relations of paretis muscles in stroke.


Journal of Neural Engineering | 2014

Accuracy assessment of a surface electromyogram decomposition system in human first dorsal interosseus muscle

Xiaogang Hu; William Z. Rymer; Nina L. Suresh

OBJECTIVE The aim of this study is to assess the accuracy of a surface electromyogram (sEMG) motor unit (MU) decomposition algorithm during low levels of muscle contraction. APPROACH A two-source method was used to verify the accuracy of the sEMG decomposition system, by utilizing simultaneous intramuscular and surface EMG recordings from the human first dorsal interosseous muscle recorded during isometric trapezoidal force contractions. Spike trains from each recording type were decomposed independently utilizing two different algorithms, EMGlab and dEMG decomposition algorithms. The degree of agreement of the decomposed spike timings was assessed for three different segments of the EMG signals, corresponding to specified regions in the force task. A regression analysis was performed to examine whether certain properties of the sEMG and force signal can predict the decomposition accuracy. MAIN RESULTS The average accuracy of successful decomposition among the 119 MUs that were common to both intramuscular and surface records was approximately 95%, and the accuracy was comparable between the different segments of the sEMG signals (i.e., force ramp-up versus steady state force versus combined). The regression function between the accuracy and properties of sEMG and force signals revealed that the signal-to-noise ratio of the action potential and stability in the action potential records were significant predictors of the surface decomposition accuracy. SIGNIFICANCE The outcomes of our study confirm the accuracy of the sEMG decomposition algorithm during low muscle contraction levels and provide confidence in the overall validity of the surface dEMG decomposition algorithm.


Muscle & Nerve | 2013

Reliability of spike triggered averaging of the surface electromyogram for motor unit action potential estimation

Xiaogang Hu; William Z. Rymer; Nina L. Suresh

Introduction: The reliability of estimated motor unit parameters using spike triggered averaging (STA) of the surface electromyogram (sEMG) has not been tested thoroughly. We investigated factors that may induce amplitude bias in estimated motor unit action potentials (MUAPs) and shape variations. Methods: An sEMG record was simulated. MUAPs were then estimated from the STA of the simulated EMG. Results: Variations in MUAP duration led to under‐estimation of real MUAP amplitude, while synchronized firing led to over‐estimation of amplitude. Spurious firing resulted in over‐estimation of the amplitude of small motor units but under‐estimation of the amplitude of large ones. Variability in amplitude and high firing rates had minimal influence on amplitude estimation. High firing rates and variation in MUAP duration led to large variations in MUAP shape. Estimation errors also correlated with shape variations. Conclusions: Recommendations to enhance the accuracy of the STA estimates have been proposed. Muscle Nerve 48: 557–570, 2013


Journal of Neurophysiology | 2014

Disturbances of motor unit rate modulation are prevalent in muscles of spastic-paretic stroke survivors

Carol Mottram; Charles J. Heckman; Randall K. Powers; William Z. Rymer; Nina L. Suresh

Stroke survivors often exhibit abnormally low motor unit firing rates during voluntary muscle activation. Our purpose was to assess the prevalence of saturation in motor unit firing rates in the spastic-paretic biceps brachii muscle of stroke survivors. To achieve this objective, we recorded the incidence and duration of impaired lower- and higher-threshold motor unit firing rate modulation in spastic-paretic, contralateral, and healthy control muscle during increases in isometric force generated by the elbow flexor muscles. Impaired firing was considered to have occurred when firing rate became constant (i.e., saturated), despite increasing force. The duration of impaired firing rate modulation in the lower-threshold unit was longer for spastic-paretic (3.9 ± 2.2 s) than for contralateral (1.4 ± 0.9 s; P < 0.001) and control (1.1 ± 1.0 s; P = 0.005) muscles. The duration of impaired firing rate modulation in the higher-threshold unit was also longer for the spastic-paretic (1.7 ± 1.6 s) than contralateral (0.3 ± 0.3 s; P = 0.007) and control (0.1 ± 0.2 s; P = 0.009) muscles. This impaired firing rate of the lower-threshold unit arose, despite an increase in the overall descending command, as shown by the recruitment of the higher-threshold unit during the time that the lower-threshold unit was saturating, and by the continuous increase in averages of the rectified EMG of the biceps brachii muscle throughout the rising phase of the contraction. These results suggest that impairments in firing rate modulation are prevalent in motor units of spastic-paretic muscle, even when the overall descending command to the muscle is increasing.


Clinical Neurophysiology | 2014

Asymmetries in vestibular evoked myogenic potentials in chronic stroke survivors with spastic hypertonia: Evidence for a vestibulospinal role

Derek Miller; Cliff S. Klein; Nina L. Suresh; William Z. Rymer

OBJECTIVE Indirect evidence suggests that lateralized changes in motoneuron behavior post-stroke are potentially due to a depolarizing supraspinal drive to the motoneuron pool, but the pathways responsible are unknown. In this study, we assessed vestibular evoked myogenic potentials (VEMPs) in the neck muscles of hemispheric stroke survivors with contralesional spasticity to quantify the relative levels of vestibular drive to the spastic-paretic and contralateral motoneuron pools. METHODS VEMPs were recorded from each sternocleidomastoid muscle in chronic stroke survivors. Side-to-side differences in cVEMP amplitude were calculated and expressed as an asymmetry ratio, a proxy for the relative amount of vestibular drive to each side. RESULTS Spastic-paretic VEMPs were larger than contralateral VEMPs in 13/16 subjects. There was a strong positive relationship between the degree of asymmetry and the severity of spasticity in this subset of subjects. Remaining subjects had larger contralateral responses. CONCLUSION Vestibular drive to cervical motoneurons is asymmetric in spastic stroke survivors, supporting our hypothesis that there is an imbalance in descending vestibular drive to motoneuron pools post-stroke. We speculate this imbalance is a consequence of the unilateral disruption of inhibitory corticobulbar projections to the vestibular nuclei. SIGNIFICANCE This study sheds new light on the underlying mechanisms of post-stroke spasticity.


international conference of the ieee engineering in medicine and biology society | 2012

Impaired motor unit control in paretic muscle post stroke assessed using surface electromyography: A preliminary report

Xiaogang Hu; Aneesha K. Suresh; Xiaoyan Li; William Z. Rymer; Nina L. Suresh

The objective of this preliminary study was to examine the possible contribution of disordered control of motor unit (MU) recruitment and firing patterns in muscle weakness post-stroke. A novel surface EMG (sEMG) recording and decomposition system was used to record sEMG signals and extract single MU activities from the first dorsal interosseous muscle (FDI) of two hemiparetic stroke survivors. To characterize MU reorganization, an estimate of the motor unit action potential (MUAP) amplitude was derived using spike triggered averaging of the sEMG signal. The MUs suitable for further analysis were selected using a set of statistical tests that assessed the variability of the morphological characteristics of the MUAPs. Our preliminary results suggest a disrupted orderly recruitment based on MUAP size, a compressed recruitment range, and reduced firing rates evident in the paretic muscle compared with the contralateral muscle of one subject with moderate impairment. In contrast, the MU organization was largely similar bilaterally for the subject with minor impairment. The preliminary results suggest that MU organizational changes with respect to recruitment and rate modulation can contribute to muscle weakness post-stroke. The contrasting results of the two subjects indicate that the degree of MU reorganization may be associated with the degree of the functional impairment, which reveals the differential diagnostic capability of the sEMG decomposition system.


Journal of Neural Engineering | 2011

Surface electromyogram analysis of the direction of isometric torque generation by the first dorsal interosseous muscle.

Ping Zhou; Nina L. Suresh; William Z. Rymer

The objective of this study was to determine whether a novel technique using high density surface electromyogram (EMG) recordings can be used to detect the directional dependence of muscle activity in a multifunctional muscle, the first dorsal interosseous (FDI). We used surface EMG recordings with a two-dimensional electrode array to search for inhomogeneous FDI activation patterns with changing torque direction at the metacarpophalangeal joint, the locus of action of the FDI muscle. The interference EMG distribution across the whole FDI muscle was recorded during isometric contraction at the same force magnitude in five different directions in the index finger abduction-flexion plane. The electrode array EMG activity was characterized by contour plots, interpolating the EMG amplitude between electrode sites. Across all subjects the amplitude of the flexion EMG was consistently lower than that of the abduction EMG at the given force. Pattern recognition methods were used to discriminate the isometric muscle contraction tasks with a linear discriminant analysis classifier, based on the extraction of two different feature sets of the surface EMG signal: the time domain (TD) feature set and a combination of autoregressive coefficients and the root mean square amplitude (AR+RMS) as a feature set. We found that high accuracies were obtained in the classification of different directions of the FDI muscle isometric contraction. With a monopolar electrode configuration, the average overall classification accuracy from nine subjects was 94.1 ± 2.3% for the TD feature set and 95.8 ± 1.5% for the AR+RMS feature set. Spatial filtering of the signal with bipolar electrode configuration improved the average overall classification accuracy to 96.7 ± 2.7% for the TD feature set and 98.1 ± 1.6% for the AR+RMS feature set. The distinct EMG contour plots and the high classification accuracies obtained from this study confirm distinct interference EMG pattern distributions as a function of task direction, suggesting that high density surface EMG is a useful tool for understanding the activation of multifunctional muscles.


international conference of the ieee engineering in medicine and biology society | 2011

Examination of motor unit control properties in stroke survivors using surface EMG decomposition: A preliminary report

Nina L. Suresh; Xiaoyan Li; Ping Zhou; William Z. Rymer

The objective of this pilot study was to examine alterations in motor unit (MU) control properties, (i.e. MU recruitment and firing rate) after stroke utilizing a recently developed high-yield surface electromyogram (EMG) decomposition technique. Two stroke subjects participated in this study. A sensor array was used to record surface EMG signals from the first dorsal interosseous (FDI) muscle during voluntary isometric contraction at varying force levels. The recording was performed in both paretic and contralateral muscles using a matched force protocol. Single motor unit activity was extracted using the surface EMG decomposition software from Delsys Inc. The results from the two stroke subjects indicate a reduction in the mean motor unit firing rate and a compression of motor unit recruitment range in paretic muscle as compared with the contralateral muscles. These findings provide further evidence of spinal motoneuron involvement after a hemispheric brain lesion, and help us to understand the complex origins of stroke induced muscle weakness.

Collaboration


Dive into the Nina L. Suresh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaogang Hu

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ping Zhou

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Zev Rymer

Rehabilitation Institute of Chicago

View shared research outputs
Top Co-Authors

Avatar

Lara M. McManus

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Babak Afsharipour

Rehabilitation Institute of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Jeon

Rehabilitation Institute of Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge