Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nina Marie Pedersen is active.

Publication


Featured researches published by Nina Marie Pedersen.


Cancer Research | 2012

A Novel Tankyrase Inhibitor Decreases Canonical Wnt Signaling in Colon Carcinoma Cells and Reduces Tumor Growth in Conditional APC Mutant Mice

Jo Waaler; Ondrej Machon; Lucie Tumova; Huyen Dinh; Vladimir Korinek; Steven Ray Wilson; Jan Erik Paulsen; Nina Marie Pedersen; Tor J. Eide; Olga Machonova; Dietmar Gradl; Andrey Voronkov; Jens Peter von Kries; Stefan Krauss

Increased nuclear accumulation of β-catenin, a mediator of canonical Wnt signaling, is found in numerous tumors and is frequently associated with tumor progression and metastasis. Inhibition of Wnt/β-catenin signaling therefore is an attractive strategy for anticancer drugs. In this study, we have identified a novel small molecule inhibitor of the β-catenin signaling pathway, JW55, that functions via inhibition of the PARP domain of tankyrase 1 and tankyrase 2 (TNKS1/2), regulators of the β-catenin destruction complex. Inhibition of TNKS1/2 poly(ADP-ribosyl)ation activity by JW55 led to stabilization of AXIN2, a member of the β-catenin destruction complex, followed by increased degradation of β-catenin. In a dose-dependent manner, JW55 inhibited canonical Wnt signaling in colon carcinoma cells that contained mutations in either the APC (adenomatous polyposis coli) locus or in an allele of β-catenin. In addition, JW55 reduced XWnt8-induced axis duplication in Xenopus embryos and tamoxifen-induced polyposis formation in conditional APC mutant mice. Together, our findings provide a novel chemotype for targeting canonical Wnt/β-catenin signaling through inhibiting the PARP domain of TNKS1/2.


Nature Cell Biology | 2010

PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody

Antonia P. Sagona; Ioannis P. Nezis; Nina Marie Pedersen; Knut Liestøl; John S. Poulton; Tor Erik Rusten; Rolf I. Skotheim; Camilla Raiborg; Harald Stenmark

Several subunits of the class III phosphatidylinositol-3-OH kinase (PI(3)K-III) complex are known as tumour suppressors. Here we uncover a function for this complex and its catalytic product phosphatidylinositol-3-phosphate (PtdIns(3)P) in cytokinesis. We show that PtdIns(3)P localizes to the midbody during cytokinesis and recruits a centrosomal protein, FYVE-CENT (ZFYVE26), and its binding partner TTC19, which in turn interacts with CHMP4B, an endosomal sorting complex required for transport (ESCRT)-III subunit implicated in the abscission step of cytokinesis. Translocation of FYVE-CENT and TTC19 from the centrosome to the midbody requires another FYVE-CENT-interacting protein, the microtubule motor KIF13A. Depletion of the VPS34 or Beclin 1 subunits of PI(3)K-III causes cytokinesis arrest and an increased number of binucleate and multinucleate cells, in a similar manner to the depletion of FYVE-CENT, KIF13A or TTC19. These results provide a mechanism for the translocation and docking of a cytokinesis regulatory machinery at the midbody.


Developmental Cell | 2010

Ubiquitination of α5β1 Integrin Controls Fibroblast Migration through Lysosomal Degradation of Fibronectin-Integrin Complexes

Viola Hélène Lobert; Andreas Brech; Nina Marie Pedersen; Jørgen Wesche; Angela Oppelt; Lene Malerød; Harald Stenmark

Cell migration requires endocytosis and recycling of integrins, but it is not known whether degradation of these membrane proteins is involved. Here we demonstrate that in migrating cells, a fraction of the endocytosed fibronectin receptor, alpha 5 beta 1 integrin, is sorted into multivesicular endosomes together with fibronectin and degraded in lysosomes. This sorting requires fibronectin-induced ubiquitination of the alpha 5 subunit, and the activity of the endosomal sorting complex required for transport (ESCRT) machinery, which interacts with alpha 5 beta 1 integrin. Importantly, we demonstrate that both alpha 5 ubiquitination and ESCRT functions are required for proper migration of fibroblasts. We propose that ligand-mediated degradation of alpha 5 beta 1 integrin via the ESCRT pathway is required in order to prevent endosomal accumulation of ligand-bound integrins that might otherwise form nonproductive adhesion sites. Fibronectin and alpha 5 beta 1 integrin therefore are trafficked to lysosomes in a similar way to growth factors and their receptors.


Experimental Cell Research | 2010

A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic.

Sigrid B. Thoresen; Nina Marie Pedersen; Knut Liestøl; Harald Stenmark

The mammalian class III phosphatidylinositol 3-kinase (PI3K-III) complex regulates fundamental cellular functions, including growth factor receptor degradation, cytokinesis and autophagy. Recent studies suggest the existence of distinct PI3K-III sub-complexes that can potentially confer functional specificity. While a substantial body of work has focused on the roles of individual PI3K-III subunits in autophagy, functional studies on their contribution to endocytic receptor downregulation and cytokinesis are limited. We therefore sought to elucidate the specific nature of the PI3K-III complexes involved in these two processes. High-content microscopy-based assays combined with siRNA-mediated depletion of individual subunits indicated that a specific sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates both receptor degradation and cytokinesis, whereas ATG14L, a PI3K-III subunit involved in autophagy, is not required. The unanticipated role of UVRAG and BIF-1 in cytokinesis was supported by a strong localisation of these proteins to the midbody. Importantly, while the tumour suppressive functions of Beclin 1, UVRAG and BIF-1 have previously been ascribed to their roles in autophagy, these results open the possibility that they may also contribute to tumour suppression via downregulation of mitogenic signalling by growth factor receptors or preclusion of aneuploidy by ensuring faithful completion of cell division.


Nature | 2015

Repeated ER–endosome contacts promote endosome translocation and neurite outgrowth

Camilla Raiborg; Eva M. Wenzel; Nina Marie Pedersen; Hallvard Olsvik; Kay Oliver Schink; Sebastian W. Schultz; Marina Vietri; Veronica Nisi; Cecilia Bucci; Andreas Brech; Terje Johansen; Harald Stenmark

The main organelles of the secretory and endocytic pathways—the endoplasmic reticulum (ER) and endosomes, respectively—are connected through contact sites whose numbers increase as endosomes mature. One function of such sites is to enable dephosphorylation of the cytosolic tails of endosomal signalling receptors by an ER-associated phosphatase, whereas others serve to negatively control the association of endosomes with the minus-end-directed microtubule motor dynein or mediate endosome fission. Cholesterol transfer and Ca2+ exchange have been proposed as additional functions of such sites. However, the compositions, activities and regulations of ER–endosome contact sites remain incompletely understood. Here we show in human and rat cell lines that protrudin, an ER protein that promotes protrusion and neurite outgrowth, forms contact sites with late endosomes (LEs) via coincident detection of the small GTPase RAB7 and phosphatidylinositol 3-phosphate (PtdIns(3)P). These contact sites mediate transfer of the microtubule motor kinesin 1 from protrudin to the motor adaptor FYCO1 on LEs. Repeated LE–ER contacts promote microtubule-dependent translocation of LEs to the cell periphery and subsequent synaptotagmin-VII-dependent fusion with the plasma membrane. Such fusion induces outgrowth of protrusions and neurites, which requires the abilities of protrudin and FYCO1 to interact with LEs and kinesin 1. Thus, protrudin-containing ER–LE contact sites are platforms for kinesin-1 loading onto LEs, and kinesin-1-mediated translocation of LEs to the plasma membrane, fuelled by repeated ER contacts, promotes protrusion and neurite outgrowth.


International Journal of Cancer | 2005

Herceptin-induced inhibition of ErbB2 signaling involves reduced phosphorylation of Akt but not endocytic down-regulation of ErbB2.

Karianne E. Longva; Nina Marie Pedersen; Camilla Haslekås; Espen Stang; Inger Helene Madshus

The anti‐proliferative effect of the ErbB2 specific antibody Herceptin in cells overexpressing ErbB2 has previously been explained by endocytic downregulation of ErbB2. However, in the following, we demonstrate that Herceptin inhibited proliferation of ErbB2 overexpressing cells without downregulating ErbB2. Herceptin did also not induce endocytosis of ErbB2. Herceptin was found to blunt proliferation of SKBr3 cells overexpressing EGFR, ErbB2, and ErbB3 and expressing functional PTEN, probably by recruiting PTEN to the plasma membrane. Akt was found to be constitutively phosphorylated both in SKBr3 cells overexpressing EGFR, ErbB2 and ErbB3, and in SKOv3 cells, overexpressing EGFR and ErbB2. However, phosphorylation of Akt was inhibited by Herceptin only in SKBr3 cells. SKOv3 cells, which lack the tumour suppressor protein Ras homolog member I, was found to have constitutively phosphorylated mitogen activated protein kinase and functionally increased Ras activity. SKOv3 cells further had low expression levels of PTEN. We thus confirm that the anti‐proliferative effect of Herceptin in SKBr3 cells is due to recruitment of PTEN to the plasma membrane and conclude that Herceptin does not blunt phosphatidyl inositol 3 kinase‐induced growth in cells with constitutive Ras activity. We further conclude that endocytic downregulation of ErbB2 does not contribute to Herceptins antiproliferative effect.


Molecular and Cellular Biology | 2006

Activation of the Epidermal Growth Factor (EGF) Receptor Induces Formation of EGF Receptor- and Grb2-Containing Clathrin-Coated Pits

Lene E. Johannessen; Nina Marie Pedersen; Ketil W. Pedersen; Inger Helene Madshus; Espen Stang

ABSTRACT In HeLa cells depleted of adaptor protein 2 complex (AP2) by small interfering RNA (siRNA) to the μ2 or α subunit or by transient overexpression of an AP2 sequestering mutant of Eps15, endocytosis of the transferrin receptor (TfR) was strongly inhibited. However, epidermal growth factor (EGF)-induced endocytosis of the EGF receptor (EGFR) was inhibited only in cells where the α subunit had been knocked down. By immunoelectron microscopy, we found that in AP2-depleted cells, the number of clathrin-coated pits was strongly reduced. When such cells were incubated with EGF, new coated pits were formed. These contained EGF, EGFR, clathrin, and Grb2 but not the TfR. The induced coated pits contained the α subunit, but labeling density was reduced compared to control cells. Induction of clathrin-coated pits required EGFR kinase activity. Overexpression of Grb2 with inactivating point mutations in N- or C-terminal SH3 domains or in both SH3 domains inhibited EGF-induced formation of coated pits efficiently, even though Grb2 SH3 mutations did not block activation of mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3-kinase (PI3K). Our data demonstrate that EGFR-induced signaling and Grb2 are essential for formation of clathrin-coated pits accommodating the EGFR, while activation of MAPK and PI3K is not required.


Histochemistry and Cell Biology | 2010

Ultrastructural characterization of giant endosomes induced by GTPase-deficient Rab5

Catherine Sem Wegener; Lene Malerød; Nina Marie Pedersen; Cinzia Prodiga; Oddmund Bakke; Harald Stenmark; Andreas Brech

The small GTPase Rab5 controls the fusogenic properties of early endosomes through GTP-dependent recruitment and activation of effector proteins. Expression of a GTPase-defective mutant, Rab5(Q79L), is known to cause formation of enlarged early endosomes. The ability of Rab5-GTP to recruit multiple effectors raises the question whether the Rab5(Q79L)-induced giant endosomes simply represent enlarged early endosomes or whether they have a more complex phenotype. In this report, we have addressed this issue by generating a HEp2 cell line with inducible expression of Rab5(Q79L) and performing ultrastructural analysis of Rab5(Q79L)-induced endosomes. We find that Rab5(Q79L) not only induces formation of enlarged early endosomes but also causes enlargement of later endocytic profiles. Most strikingly, Rab5(Q79L) causes formation of enlarged multivesicular endosomes with a large number of intraluminal vesicles, and endosomes that contain both early and late endocytic markers are frequently observed. In addition, we observe defects in the sorting of the EGF receptor and the transferrin receptor through this compartment.


Journal of Cell Biology | 2008

An endosomally localized isoform of Eps15 interacts with Hrs to mediate degradation of epidermal growth factor receptor

Ingrid Roxrud; Camilla Raiborg; Nina Marie Pedersen; Espen Stang; Harald Stenmark

Down-regulation of activated and ubiquitinated growth factor (GF) receptors by endocytosis and subsequent lysosomal degradation ensures attenuation of GF signaling. The ubiquitin-binding adaptor protein Eps15 (epidermal growth factor receptor [EGFR] pathway substrate 15) functions in endocytosis of such receptors. Here, we identify an Eps15 isoform, Eps15b, and demonstrate its expression in human cells and conservation across vertebrate species. Although both Eps15 and Eps15b interact with the endosomal sorting protein Hrs (hepatocyte growth factor–regulated tyrosine kinase substrate) in vitro, we find that Hrs specifically binds Eps15b in vivo (whereas adaptor protein 2 preferentially interacts with Eps15). Although Eps15 mainly localizes to clathrin-coated pits at the plasma membrane, Eps15b localizes to Hrs-positive microdomains on endosomes. Eps15b overexpression, similarly to Hrs overexpression, inhibits ligand-mediated degradation of EGFR, whereas Eps15 is without effect. Similarly, depletion of Eps15b but not Eps15 delays degradation and promotes recycling of EGFR. These results indicate that Eps15b is an endosomally localized isoform of Eps15 that is present in the Hrs complex via direct Hrs interaction and important for the sorting function of this complex.


Traffic | 2006

EGF-induced activation of the EGF receptor does not trigger mobilization of caveolae

Maja Kazazic; Kirstine Roepstorff; Lene E. Johannessen; Nina Marie Pedersen; Bo van Deurs; Espen Stang; Inger Helene Madshus

Caveolae‐dependent endocytosis has recently been proposed in the uptake of EGF receptor (EGFR) at high concentrations of ligand. Consistently, upon incubation of HEp2 and HeLa cells with methyl‐β‐cyclodextrin, we observed a small inhibitory effect on endocytosis of ligated EGFR in HEp2 cells. However, immunoelectron microscopy showed the same relative amount of bound EGF localizing to caveolae on incubation with high and low concentrations of EGF, not supporting rapid recruitment of EGFR to caveolae. Live‐cell microscopy furthermore demonstrated that incubating HEp2 cells with high concentrations of EGF did not increase the mobility of caveolae. By RNA‐interference‐mediated knockdown of clathrin heavy chain in HEp2 and HeLa cells, we found that endocytosis of EGFR was efficiently inhibited both at high and low concentrations of EGF. Our results show that caveolae are not involved in endocytosis of EGF‐bound EGFR to any significant degree and that high concentrations of EGF do not further mobilize caveolae.

Collaboration


Dive into the Nina Marie Pedersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Skovgaard Poulsen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Thomas T. Poulsen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Andreas Brech

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Espen Stang

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikkel Wandahl Pedersen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge