Nina Offenhäuser
European Institute of Oncology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nina Offenhäuser.
Science | 1996
Bruce D. Carter; Christian Kaltschmidt; Barbara Kaltschmidt; Nina Offenhäuser; Renate Böhm-Matthaei; Patrick A. Baeuerle; Yves-Alain Barde
Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) selectively bind to distinct members of the Trk family of tyrosine kinase receptors, but all three bind with similar affinities to the neurotrophin receptor p75 (p75NTR). The biological significance of neurotrophin binding to p75NTR in cells that also express Trk receptors has been difficult to ascertain. In the absence of TrkA, NGF binding to p75NTR activated the transcription factor nuclear factor kappa B (NF-κB) in rat Schwann cells. This activation was not observed in Schwann cells isolated from mice that lacked p75NTR. The effect was selective for NGF; NF-κB was not activated by BDNF or NT-3.
Nature | 2003
Marcello Ceci; Cristina Gaviraghi; Chiara Gorrini; Leonardo A. Sala; Nina Offenhäuser; Pier Carlo Marchisio; Stefano Biffo
The assembly of 80S ribosomes requires joining of the 40S and 60S subunits, which is triggered by the formation of an initiation complex on the 40S subunit. This event is rate-limiting for translation, and depends on external stimuli and the status of the cell. Here we show that 60S subunits are activated by release of eIF6 (also termed p27BBP). In the cytoplasm, eIF6 is bound to free 60S but not to 80S. Furthermore, eIF6 interacts in the cytoplasm with RACK1, a receptor for activated protein kinase C (PKC). RACK1 is a major component of translating ribosomes, which harbour significant amounts of PKC. Loading 60S subunits with eIF6 caused a dose-dependent translational block and impairment of 80S formation, which were reversed by expression of RACK1 and stimulation of PKC in vivo and in vitro. PKC stimulation led to eIF6 phosphorylation, and mutation of a serine residue in the carboxy terminus of eIF6 impaired RACK1/PKC-mediated translational rescue. We propose that eIF6 release regulates subunit joining, and that RACK1 provides a physical and functional link between PKC signalling and ribosome activation.
Cell | 2006
Nina Offenhäuser; Daniela Castelletti; Lisa Mapelli; Blanche Ekalle Soppo; Maria Cristina Regondi; Paola Rossi; Egidio D'Angelo; Carolina Frassoni; Alida Amadeo; Arianna Tocchetti; Benedetta Pozzi; Andrea Disanza; Douglas J. Guarnieri; Christer Betsholtz; Giorgio Scita; Ulrike Heberlein; Pier Paolo Di Fiore
Dynamic modulation of the actin cytoskeleton is critical for synaptic plasticity, abnormalities of which are thought to contribute to mental illness and addiction. Here we report that mice lacking Eps8, a regulator of actin dynamics, are resistant to some acute intoxicating effects of ethanol and show increased ethanol consumption. In the brain, the N-methyl-D-aspartate (NMDA) receptor is a major target of ethanol. We show that Eps8 is localized to postsynaptic structures and is part of the NMDA receptor complex. Moreover, in Eps8 null mice, NMDA receptor currents and their sensitivity to inhibition by ethanol are abnormal. In addition, Eps8 null neurons are resistant to the actin-remodeling activities of NMDA and ethanol. We propose that proper regulation of the actin cytoskeleton is a key determinant of cellular and behavioral responses to ethanol.
PLOS Biology | 2009
Elisabetta Menna; Andrea Disanza; Cinzia Cagnoli; Ursula Schenk; Giuliana Gelsomino; Emanuela Frittoli; Maud Hertzog; Nina Offenhäuser; Hans Jürgen Kreienkamp; Frank B. Gertler; Pier Paolo Di Fiore; Giorgio Scita; Michela Matteoli
A novel signaling cascade controlling actin polymerization in response to extracellular signals regulates filopodia formation and likely also neuronal synapse formation.
PLOS Biology | 2010
Maud Hertzog; Francesca Milanesi; Larnele Hazelwood; Andrea Disanza; HongJun Liu; Emilie Perlade; Maria Grazia Malabarba; Alessio Maiolica; Stefano Confalonieri; Christophe Le Clainche; Nina Offenhäuser; Jennifer Block; Klemens Rottner; Pier Paolo Di Fiore; Marie-France Carlier; Niels Volkmann; Dorit Hanein; Giorgio Scita
The unusual dual functions of the actin-binding protein EPS8 as an actin capping and actin bundling factor are mapped to distinct structural features of the protein and to distinct physiological activities in vivo.
PLOS Biology | 2011
Valeria Zampini; Lukas Rüttiger; Stuart L. Johnson; Christoph Franz; David N. Furness; Jörg Waldhaus; Hao Xiong; Carole M. Hackney; Matthew C. Holley; Nina Offenhäuser; Pier Paolo Di Fiore; Marlies Knipper; Sergio Masetto; Walter Marcotti
Hair cells of the mammalian cochlea are specialized for the dynamic coding of sound stimuli. The transduction of sound waves into electrical signals depends upon mechanosensitive hair bundles that project from the cells apical surface. Each stereocilium within a hair bundle is composed of uniformly polarized and tightly packed actin filaments. Several stereociliary proteins have been shown to be associated with hair bundle development and function and are known to cause deafness in mice and humans when mutated. The growth of the stereociliar actin core is dynamically regulated at the actin filament barbed ends in the stereociliary tip. We show that Eps8, a protein with actin binding, bundling, and barbed-end capping activities in other systems, is a novel component of the hair bundle. Eps8 is localized predominantly at the tip of the stereocilia and is essential for their normal elongation and function. Moreover, we have found that Eps8 knockout mice are profoundly deaf and that IHCs, but not OHCs, fail to mature into fully functional sensory receptors. We propose that Eps8 directly regulates stereocilia growth in hair cells and also plays a crucial role in the physiological maturation of mammalian cochlear IHCs. Together, our results indicate that Eps8 is critical in coordinating the development and functionality of mammalian auditory hair cells.
PLOS ONE | 2010
Arianna Tocchetti; Charlotte Blanche Ekalle Soppo; Fabio Zani; Fabrizio Bianchi; Maria Cristina Gagliani; Benedetta Pozzi; Jan Rozman; Ralf Elvert; Nicole Ehrhardt; Birgit Rathkolb; Corinna Moerth; Marion Horsch; Helmut Fuchs; Valérie Gailus-Durner; Johannes Beckers; Martin Klingenspor; Eckhard Wolf; Martin Hrabé de Angelis; Eugenio Scanziani; Carlo Tacchetti; Giorgio Scita; Pier Paolo Di Fiore; Nina Offenhäuser
Background In a variety of organisms, including mammals, caloric restriction improves metabolic status and lowers the incidence of chronic-degenerative diseases, ultimately leading to increased lifespan. Methodology/Principal Findings Here we show that knockout mice for Eps8, a regulator of actin dynamics, display reduced body weight, partial resistance to age- or diet-induced obesity, and overall improved metabolic status. Alteration in the liver gene expression profile, in behavior and metabolism point to a calorie restriction-like phenotype in Eps8 knockout mice. Additionally, and consistent with a calorie restricted metabolism, Eps8 knockout mice show increased lifespan. The metabolic alterations in Eps8 knockout mice correlated with a significant reduction in intestinal fat absorption presumably caused by a 25% reduction in intestinal microvilli length. Conclusions/Significance Our findings implicate actin dynamics as a novel variable in the determination of longevity. Additionally, our observations suggest that subtle differences in energy balance can, over time, significantly affect bodyweight and metabolic status in mice.
Proceedings of the National Academy of Sciences of the United States of America | 2013
David N. Furness; Stuart L. Johnson; Uri Manor; Lukas Rüttiger; Arianna Tocchetti; Nina Offenhäuser; Jennifer Olt; Richard J. Goodyear; Sarath Vijayakumar; Yuhai Dai; Carole M. Hackney; Christoph Franz; Pier Paolo Di Fiore; Sergio Masetto; Sherri M. Jones; Marlies Knipper; Matthew C. Holley; Guy P. Richardson; Bechara Kachar; Walter Marcotti
Mechanotransduction in the mammalian auditory system depends on mechanosensitive channels in the hair bundles that project from the apical surface of the sensory hair cells. Individual stereocilia within each bundle contain a core of tightly packed actin filaments, whose length is dynamically regulated during development and in the adult. We show that the actin-binding protein epidermal growth factor receptor pathway substrate 8 (Eps8)L2, a member of the Eps8-like protein family, is a newly identified hair bundle protein that is localized at the tips of stereocilia of both cochlear and vestibular hair cells. It has a spatiotemporal expression pattern that complements that of Eps8. In the cochlea, whereas Eps8 is essential for the initial elongation of stereocilia, Eps8L2 is required for their maintenance in adult hair cells. In the absence of both proteins, the ordered staircase structure of the hair bundle in the cochlea decays. In contrast to the early profound hearing loss associated with an absence of Eps8, Eps8L2 null-mutant mice exhibit a late-onset, progressive hearing loss that is directly linked to a gradual deterioration in hair bundle morphology. We conclude that Eps8L2 is required for the long-term maintenance of the staircase structure and mechanosensory function of auditory hair bundles. It complements the developmental role of Eps8 and is a candidate gene for progressive age-related hearing loss.
Nature Communications | 2015
Daniela Brina; Annarita Miluzio; Sara Ricciardi; Kim Clarke; Peter K. Davidsen; Gabriella Viero; Toma Tebaldi; Nina Offenhäuser; Jan Rozman; Birgit Rathkolb; Susanne Neschen; Martin Klingenspor; Eckhard Wolf; Valérie Gailus-Durner; Helmut Fuchs; Martin Hrabé de Angelis; Alessandro Quattrone; Francesco Falciani; Stefano Biffo
Insulin regulates glycaemia, lipogenesis and increases mRNA translation. Cells with reduced eukaryotic initiation factor 6 (eIF6) do not increase translation in response to insulin. The role of insulin-regulated translation is unknown. Here we show that reduction of insulin-regulated translation in mice heterozygous for eIF6 results in normal glycaemia, but less blood cholesterol and triglycerides. eIF6 controls fatty acid synthesis and glycolysis in a cell autonomous fashion. eIF6 acts by exerting translational control of adipogenic transcription factors like C/EBPβ, C/EBPδ and ATF4 that have G/C rich or uORF sequences in their 5′ UTR. The outcome of the translational activation by eIF6 is a reshaping of gene expression with increased levels of lipogenic and glycolytic enzymes. Finally, eIF6 levels modulate histone acetylation and amounts of rate-limiting fatty acid synthase (Fasn) mRNA. Since obesity, type 2 diabetes, and cancer require a Fasn-driven lipogenic state, we propose that eIF6 could be a therapeutic target for these diseases.
Current Biology | 2013
Andrea Palamidessi; Emanuela Frittoli; Nadia Ducano; Nina Offenhäuser; Sara Sigismund; Hiroaki Kajiho; Dario Parazzoli; Amanda Oldani; Marco Gobbi; Guido Serini; Pier Paolo Di Fiore; Giorgio Scita; Letizia Lanzetti
BACKGROUND Integrin-mediated adhesion of cells to the extracellular matrix (ECM) relies on the dynamic formation of focal adhesions (FAs), which are biochemical and mechanosensitive platforms composed of a large variety of cytosolic and transmembrane proteins. During migration, there is a constant turnover of ECM contacts that initially form as nascent adhesions at the leading edge, mature into FAs as actomyosin tension builds up, and are then disassembled at the cell rear, thus allowing for cell detachment. Although the mechanisms of FA assembly have largely been defined, the molecular circuitry that regulates their disassembly still remains elusive. RESULTS Here, we show that RN-tre, a GTPase-activating protein (GAP) for Rabs including Rab5 and Rab43, is a novel regulator of FA dynamics and cell migration. RN-tre localizes to FAs and to a pool of Rab5-positive vesicles mainly associated with FAs undergoing rapid remodeling. We found that RN-tre inhibits endocytosis of β1, but not β3, integrins and delays the turnover of FAs, ultimately impairing β1-dependent, but not β3-dependent, chemotactic cell migration. All of these effects are mediated by its GAP activity and rely on Rab5. CONCLUSIONS Our findings identify RN-tre as the Rab5-GAP that spatiotemporally controls FA remodeling during chemotactic cell migration.