Nina Reuter
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nina Reuter.
Journal of Virology | 2012
Florian Full; Nina Reuter; Katrin Zielke; Thomas Stamminger; Armin Ensser
ABSTRACT In recent studies, the nuclear domain 10 (ND10) components PML, Sp100, human Daxx (hDaxx), and ATRX were identified to be cellular restriction factors that are able to inhibit the replication of several herpesviruses. The antiviral function of ND10, however, is antagonized by viral effector proteins by a variety of strategies, including degradation of PML or relocalization of ND10 proteins. In this study, we analyzed the interplay between infection with herpesvirus saimiri (HVS), the prototypic rhadinovirus, and cellular defense by ND10. In contrast to other herpesviruses, we found that HVS specifically degraded the cellular ND10 component Sp100, whereas other factors like PML or hDaxx remained intact. We could further identify the ORF3 tegument protein of HVS, which shares homology with the cellular formylglycinamide ribotide amidotransferase (FGARAT) enzyme, to be the viral factor that induces the proteasomal degradation of Sp100. Interestingly, recent studies showed that the ORF3-homologous proteins ORF75c of murine gammaherpesvirus 68 and BNRF-1 of Epstein-Barr virus modulate the ND10 proteins PML and ATRX, respectively, suggesting that the ND10 targets of viral FGARAT-homologous proteins diversified during evolution. Furthermore, a virus with the ORF3 deletion was efficiently complemented in Sp100-depleted cells, indicating that Sp100 is able to inhibit HVS in the absence of antagonistic mechanisms. In contrast, we observed that PML, which was neither degraded nor redistributed after HVS infection, strongly restricted both wild-type HVS and virus with the ORF3 deletion. Thus, HVS may lack a factor that efficiently counteracts the repressive function of PML, which may foster latency as the outcome of infection.
Viruses | 2015
Nadine Wagenknecht; Nina Reuter; Myriam Scherer; Anna Reichel; Regina Müller; Thomas Stamminger
Promyelocytic leukemia nuclear bodies, also termed nuclear domain 10 (ND10), have emerged as nuclear protein accumulations mediating an intrinsic cellular defense against viral infections via chromatin-based mechanisms, however, their contribution to the control of herpesviral latency is still controversial. In this study, we utilized the monocytic cell line THP-1 as an in vitro latency model for human cytomegalovirus infection (HCMV). Characterization of THP-1 cells by immunofluorescence and Western blot analysis confirmed the expression of all major ND10 components. THP-1 cells with a stable, individual knockdown of PML, hDaxx or Sp100 were generated. Importantly, depletion of the major ND10 proteins did not prevent the terminal cellular differentiation of THP-1 monocytes. After construction of a recombinant, endotheliotropic human cytomegalovirus expressing IE2-EYFP, we investigated whether the depletion of ND10 proteins affects the onset of viral IE gene expression. While after infection of differentiated, THP-1-derived macrophages as well as during differentiation-induced reactivation from latency an increase in the number of IE-expressing cells was readily detectable in the absence of the major ND10 proteins, no effect was observed in non-differentiated monocytes. We conclude that PML, hDaxx and Sp100 primarily act as cellular restriction factors during lytic HCMV replication and during the dynamic process of reactivation but do not serve as key determinants for the establishment of HCMV latency.
PLOS Pathogens | 2014
Myriam Scherer; Stefan Klingl; Madhumati Sevvana; Victoria Otto; Eva-Maria Schilling; Joachim D. Stump; Regina Müller; Nina Reuter; Heinrich Sticht; Yves A. Muller; Thomas Stamminger
PML nuclear bodies (PML-NBs) are enigmatic structures of the cell nucleus that act as key mediators of intrinsic immunity against viral pathogens. PML itself is a member of the E3-ligase TRIM family of proteins that regulates a variety of innate immune signaling pathways. Consequently, viruses have evolved effector proteins to modify PML-NBs; however, little is known concerning structure-function relationships of viral antagonists. The herpesvirus human cytomegalovirus (HCMV) expresses the abundant immediate-early protein IE1 that colocalizes with PML-NBs and induces their dispersal, which correlates with the antagonization of NB-mediated intrinsic immunity. Here, we delineate the molecular basis for this antagonization by presenting the first crystal structure for the evolutionary conserved primate cytomegalovirus IE1 proteins. We show that IE1 consists of a globular core (IE1CORE) flanked by intrinsically disordered regions. The 2.3 Å crystal structure of IE1CORE displays an all α-helical, femur-shaped fold, which lacks overall fold similarity with known protein structures, but shares secondary structure features recently observed in the coiled-coil domain of TRIM proteins. Yeast two-hybrid and coimmunoprecipitation experiments demonstrate that IE1CORE binds efficiently to the TRIM family member PML, and is able to induce PML deSUMOylation. Intriguingly, this results in the release of NB-associated proteins into the nucleoplasm, but not of PML itself. Importantly, we show that PML deSUMOylation by IE1CORE is sufficient to antagonize PML-NB-instituted intrinsic immunity. Moreover, co-immunoprecipitation experiments demonstrate that IE1CORE binds via the coiled-coil domain to PML and also interacts with TRIM5α We propose that IE1CORE sequesters PML and possibly other TRIM family members via structural mimicry using an extended binding surface formed by the coiled-coil region. This mode of interaction might render the antagonizing activity less susceptible to mutational escape.
Journal of Cell Biology | 2012
Tobias Ulbricht; Mohammad Alzrigat; Almut Horch; Nina Reuter; Anna von Mikecz; Viktor Steimle; Eberhard Schmitt; Oliver H. Krämer; Thomas Stamminger; Peter Hemmerich
Promyelocytic leukemia (PML) protein binds to and stabilizes CIITA at PML nuclear bodies, which promotes expression of the MHC class II gene locus in response to interferon-γ exposure.
Journal of Virology | 2016
Myriam Scherer; Victoria Otto; Joachim D. Stump; Stefan Klingl; Regina Müller; Nina Reuter; Yves A. Muller; Heinrich Sticht; Thomas Stamminger
ABSTRACT PML is the organizer of cellular structures termed nuclear domain 10 (ND10) or PML-nuclear bodies (PML-NBs) that act as key mediators of intrinsic immunity against human cytomegalovirus (HCMV) and other viruses. The antiviral function of ND10 is antagonized by viral regulatory proteins such as the immediate early protein IE1 of HCMV. IE1 interacts with PML through its globular core domain (IE1CORE) and induces ND10 disruption in order to initiate lytic HCMV infection. Here, we investigate the consequences of a point mutation (L174P) in IE1CORE, which was shown to abrogate the interaction with PML, for lytic HCMV infection. We found that a recombinant HCMV encoding IE1-L174P displays a severe growth defect similar to that of an IE1 deletion virus. Bioinformatic modeling based on the crystal structure of IE1CORE suggested that insertion of proline into the highly alpha-helical domain severely affects its structural integrity. Consistently, L174P mutation abrogates the functionality of IE1CORE and results in degradation of the IE1 protein during infection. In addition, our data provide evidence that IE1CORE as expressed by a recombinant HCMV encoding IE1 1-382 not only is required to antagonize PML-mediated intrinsic immunity but also affects a recently described function of PML in innate immune signaling. We demonstrate a coregulatory role of PML in type I and type II interferon-induced gene expression and provide evidence that upregulation of interferon-induced genes is inhibited by IE1CORE. In conclusion, our data suggest that targeting PML by viral regulatory proteins represents a strategy to antagonize both intrinsic and innate immune mechanisms. IMPORTANCE PML nuclear bodies (PML-NBs), which represent nuclear multiprotein complexes consisting of PML and additional proteins, represent important cellular structures that mediate intrinsic resistance against many viruses, including human cytomegalovirus (HCMV). During HCMV infection, the major immediate early protein IE1 binds to PML via a central globular domain (IE1CORE), and we have shown previously that this is sufficient to antagonize intrinsic immunity. Here, we demonstrate that modification of PML by IE1CORE not only abrogates intrinsic defense mechanisms but also attenuates the interferon response during infection. Our data show that PML plays a novel coregulatory role in type I as well as type II interferon-induced gene expression, which is antagonized by IE1CORE. Importantly, our finding supports the view that targeting of PML-NBs by viral regulatory proteins has evolved as a strategy to inhibit both intrinsic and innate immune defense mechanisms.
PLOS Pathogens | 2017
Anna Bootz; Astrid Karbach; Johannes Spindler; Barbara Kropff; Nina Reuter; Heinrich Sticht; Thomas H. Winkler; William J. Britt; Michael Mach
Human cytomegalovirus (HCMV) is an important, ubiquitous pathogen that causes severe clinical disease in immunocompromised individuals, such as organ transplant recipients and infants infected in utero. Antiviral chemotherapy remains problematic due to toxicity of the available compounds and the emergence of viruses resistant to available antiviral therapies. Antiviral antibodies could represent a valuable alternative strategy to limit the clinical consequences of viral disease in patients. The envelope glycoprotein B (gB) of HCMV is a major antigen for the induction of virus neutralizing antibodies. However, the role of anti-gB antibodies in the course of the infection in-vivo remains unknown. We have used a murine CMV (MCMV) model to generate and study a number of anti-gB monoclonal antibodies (mAbs) with differing virus-neutralizing capacities. The mAbs were found to bind to similar antigenic structures on MCMV gB that are represented in HCMV gB. When mAbs were used in immunodeficient RAG-/- hosts to limit an ongoing infection we observed a reduction in viral load both with mAbs having potent neutralizing capacity in-vitro as well as mAbs classified as non-neutralizing. In a therapeutic setting, neutralizing mAbs showed a greater capacity to reduce the viral burden compared to non-neutralizing antibodies. Efficacy was correlated with sustained concentration of virus neutralizing mAbs in-vivo rather than their in-vitro neutralizing capacity. Combinations of neutralizing mAbs further augmented the antiviral effect and were found to be as potent in protection as polyvalent serum from immune animals. Prophylactic administration of mAbs before infection was also protective and both neutralizing and non-neutralizing mAbs were equally effective in preventing lethal infection of immunodeficient mice. In summary, our data argue that therapeutic application of potently neutralizing mAbs against gB represent a strategy to modify the outcome of CMV infection in immunodeficient hosts. When present before infection, both neutralizing and non-neutralizing anti-gB exhibited protective capacity.
Journal of Virology | 2017
Eva-Maria Schilling; Myriam Scherer; Nina Reuter; Johannes Schweininger; Yves A. Muller; Thomas Stamminger
ABSTRACT PML nuclear bodies (NBs) are accumulations of cellular proteins embedded in a scaffold-like structure built by SUMO-modified PML/TRIM19. PML and other NB proteins act as cellular restriction factors against human cytomegalovirus (HCMV); however, this intrinsic defense is counteracted by the immediate early protein 1 (IE1) of HCMV. IE1 directly interacts with the PML coiled-coil domain via its globular core region and disrupts NB foci by inducing a loss of PML SUMOylation. Here, we demonstrate that IE1 acts via abrogating the de novo SUMOylation of PML. In order to overcome reversible SUMOylation dynamics, we made use of a cell-based assay that combines inducible IE1 expression with a SUMO mutant resistant to SUMO proteases. Interestingly, we observed that IE1 expression did not affect preSUMOylated PML; however, it clearly prevented de novo SUMO conjugation. Consistent results were obtained by in vitro SUMOylation assays, demonstrating that IE1 alone is sufficient for this effect. Furthermore, IE1 acts in a selective manner, since K160 was identified as the main target lysine. This is strengthened by the fact that IE1 also prevents As2O3-mediated hyperSUMOylation of K160, thereby blocking PML degradation. Since IE1 did not interfere with coiled-coil-mediated PML dimerization, we propose that IE1 affects PML autoSUMOylation either by directly abrogating PML E3 ligase function or by preventing access to SUMO sites. Thus, our data suggest a novel mechanism for how a viral protein counteracts a cellular restriction factor by selectively preventing the de novo SUMOylation at specific lysine residues without affecting global protein SUMOylation. IMPORTANCE The human cytomegalovirus IE1 protein acts as an important antagonist of a cellular restriction mechanism that is mediated by subnuclear structures termed PML nuclear bodies. This function of IE1 is required for efficient viral replication and thus constitutes a potential target for antiviral strategies. In this paper, we further elucidate the molecular mechanism for how IE1 antagonizes PML NBs. We show that tight binding of IE1 to PML interferes with the de novo SUMOylation of a distinct lysine residue that is also the target of stress-mediated hyperSUMOylation of PML. This is of importance since it represents a novel mechanism used by a viral antagonist of intrinsic immunity. Furthermore, it highlights the possibility of developing small molecules that specifically abrogate this PML-antagonistic activity of IE1 and thus inhibit viral replication.
Viruses | 2015
Tanja Kahle; Bianca Volkmann; Kristin Eissmann; Alexandra Herrmann; Sven Schmitt; Sabine Wittmann; Laura Merkel; Nina Reuter; Thomas Stamminger; Thomas Gramberg
The promyelocytic leukemia protein (PML) is the main structural component of the nuclear matrix structures termed nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs). PML and ND10 structures have been shown to mediate an intrinsic immune response against a variety of different viruses. Their role during retroviral replication, however, is still controversially discussed. In this study, we analyzed the role of PML and the ND10 components Daxx and Sp100 during retroviral replication in different cell types. Using cell lines exhibiting a shRNA-mediated knockdown, we found that PML, but not Daxx or Sp100, inhibits HIV and other retroviruses in a cell type-dependent manner. The PML-mediated block to retroviral infection was active in primary human fibroblasts and murine embryonic fibroblasts but absent from T cells and myeloid cell lines. Quantitative PCR analysis of HIV cDNA in infected cells revealed that PML restricts infection at the level of reverse transcription. Our findings shed light on the controversial role of PML during retroviral infection and show that PML contributes to the intrinsic restriction of retroviral infections in a cell type-dependent manner.
Journal of General Virology | 2013
Myriam Scherer; Nina Reuter; Nadine Wagenknecht; Victoria Otto; Heinrich Sticht; Thomas Stamminger
Recent studies have suggested that the small ubiquitin-related modifier (SUMO) conjugation pathway may play an important role in intrinsic antiviral resistance and thus for repression of herpesviral infections. In particular, it was shown that the herpes simplex virus type-1 regulatory protein ICP0 acts as a SUMO-targeted ubiquitin ligase (STUbL), inducing the widespread degradation of SUMO-conjugated proteins during infection. As the IE1 protein of human cytomegalovirus (HCMV) is known to mediate a de-SUMOylation of PML, we investigated whether HCMV uses a similar mechanism to counteract intrinsic antiviral resistance. We generated primary human fibroblasts stably expressing FLAG-SUMO-1 or FLAG-SUMO-3 and analysed the SUMOylation pattern after HCMV infection or isolated IE1 expression. However, Western blot experiments did not reveal a global loss of SUMO conjugates, either in HCMV-infected or in IE1-expressing cells, arguing against a function of IE1 as an STUbL. Interestingly, we observed that FLAG-SUMO-1 and FLAG-SUMO-3, subsequent to IE1-mediated promyelocytic leukemia protein (PML) de-SUMOylation and the consequent disruption of PML nuclear bodies, were recruited into viral replication compartments. This raised the question of whether FLAG-SUMO-1/3 might promote HCMV replication. Intriguingly, overexpression of FLAG-SUMO-1/3 enhanced accumulation of viral DNA, which correlated with an increase in viral replication and in virus particle release. Together, these data indicate that HCMV, in contrast to other herpesviruses, has evolved subtle mechanisms enabling it to utilize the SUMO conjugation pathway for its own benefit, resulting in an overall positive effect of SUMO conjugation for HCMV replication.
Journal of Virology | 2017
Nina Reuter; Eva-Maria Schilling; Myriam Scherer; Regina Müller; Thomas Stamminger
ABSTRACT Previous studies identified the nuclear domain 10 (ND10) components promyelocytic leukemia protein (PML), hDaxx, and Sp100 as factors of an intrinsic immune response against human cytomegalovirus (HCMV). This antiviral function of ND10, however, is antagonized by viral effector proteins like IE1p72, which induces dispersal of ND10. Furthermore, we have shown that both major immediate early proteins of HCMV, IE1p72 and IE2p86, transiently colocalize with ND10 subnuclear structures and undergo modification by the covalent attachment of SUMO. Since recent reports indicate that PML acts as a SUMO E3 ligase, we asked whether the SUMOylation of IE1p72 and IE2p86 is regulated by PML. To address this, PML-depleted fibroblasts, as well as cells overexpressing individual PML isoforms, were infected with HCMV. Western blot experiments revealed a clear correlation between the degree of IE1p72 SUMO conjugation and the abundance of PML. On the other hand, the SUMOylation of IE2p86 was not affected by PML. By performing in vitro SUMOylation assays, we were able to provide direct evidence that IE1p72 is a substrate for PML-mediated SUMOylation. Interestingly, disruption of the RING finger domain of PML, which is proposed to confer SUMO E3 ligase activity, abolished PML-induced SUMOylation of IE1p72. In contrast, IE1p72 was still efficiently SUMO modified by a SUMOylation-defective PML mutant, indicating that intact ND10 bodies are not necessary for this effect. Thus, this is the first report that the E3 ligase PML is capable of stimulating the SUMOylation of a viral protein which is supposed to serve as a cellular mechanism to compromise specific functions of IE1p72. IMPORTANCE The major immediate early proteins of human cytomegalovirus, termed IE1p72 and IE2p86, have previously been shown to undergo posttranslational modification by covalent coupling to SUMO moieties at specific lysine residues. However, the enzymatic activities that are responsible for this modification have not been identified. Here, we demonstrate that the PML protein, which mediates an intrinsic immune response against HCMV, specifically serves as an E3 ligase for SUMO modification of IE1p72. Since SUMO modification of IE1p72 has previously been shown to interfere with STAT factor binding, thus compromising the interferon-antagonistic function of this viral effector protein, our finding highlights an additional mechanism through which PML is able to restrict viral infections.