Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nina Wettschureck is active.

Publication


Featured researches published by Nina Wettschureck.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy

Cemil Özcelik; Bettina Erdmann; Bernhard Pilz; Nina Wettschureck; Stefan Britsch; Norbert Hubner; Kenneth R. Chien; Carmen Birchmeier; Alistair N. Garratt

The ErbB2 (Her2) proto-oncogene encodes a receptor tyrosine kinase, which is frequently amplified and overexpressed in human tumors. ErbB2 provides the target for a novel and effective antibody-based therapy (Trastuzumab/Herceptin) used for the treatment of mammary carcinomas. However, cardiomyopathies develop in a proportion of patients treated with Trastuzumab, and the incidence of such complications is increased by combination with standard chemotherapy. Gene ablation studies have previously demonstrated that the ErbB2 receptor, together with its coreceptor ErbB4 and the ligand Neuregulin-1, are essential for normal development of the heart ventricle. We use here Cre-loxP technology to mutate ErbB2 specifically in ventricular cardiomyocytes. Conditional mutant mice develop a severe dilated cardiomyopathy, with signs of cardiac dysfunction generally appearing by the second postnatal month. We infer that signaling from the ErbB2 receptor, which is enriched in T-tubules in cardiomyocytes, is crucial for adult heart function. Conditional ErbB2 mutant mice provide a model of dilated cardiomyopathy. In particular, they will allow a rigorous assessment of the role of ErbB2 in the heart and provide insight into the molecular mechanisms that underlie the adverse effects of anti-ErbB2 antibodies.


Nature Medicine | 2001

Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gα q /Gα 11 in cardiomyocytes

Nina Wettschureck; Hartmut Rütten; Alexandra Zywietz; Doris Gehring; Tom M. Wilkie; Ju Chen; Kenneth R. Chien; Stefan Offermanns

Myocardial hypertrophy is an adaptational response of the heart to increased work load, but it is also associated with a high risk of cardiac mortality due to its established role in the development of cardiac failure, one of the leading causes of death in developed countries. Multiple growth factors and various downstream signaling pathways involving, for example, ras, gp-130 (ref. 4), JNK/p38 (refs. 5,6) and calcineurin/NFAT/CaM-kinase have been implicated in the hypertrophic response. However, there is evidence that the initial phase in the development of myocardial hypertrophy involves the formation of cardiac para- and/or autocrine factors like endothelin-1, norepinephrine or angiotensin II (refs. 7,8), the receptors of which are coupled to G-proteins of the Gq/11-, G12/13- and Gi/o-families. Cardiomyocyte-specific transgenic overexpression of α1-adrenergic or angiotensin (AT1)-receptors as well as of the Gq α-subunit, Gαq, results in myocardial hypertrophy. These data demonstrate that chronic activation of the Gq/G11-family is sufficient to induce myocardial hypertrophy. In order to test whether Gq/G11 mediate the physiological hypertrophy response to pressure overload, we generated a mouse line lacking both Gαq and Gα11 in cardiomyocytes. These mice showed no detectable ventricular hypertrophy in response to pressure-overload induced by aortic constriction. The complete lack of a hypertrophic response proves that the Gq/G11-mediated pathway is essential for cardiac hypertrophy induced by pressure overload and makes this signaling process an interesting target for interventions to prevent myocardial hypertrophy.


Journal of Molecular Medicine | 2002

Rho/Rho-kinase mediated signaling in physiology and pathophysiology

Nina Wettschureck; Stefan Offermanns

Abstract. The small GTPase Rho is implicated in many cellular functions such as cell adhesion, cell motility and migration, growth control, cell contraction, and cytokinesis. One of its main effectors, Rho-kinase, appears to play a key role in the regulation of force and velocity of actomyosin crossbridging in smooth muscle and nonmuscle cells by inhibiting myosin phosphatase-mediated dephosphorylation of the regulatory chain of myosin II. Abnormal activation of the Rho/Rho-kinase pathway has been shown to play a role in diseases such as hypertension and bronchial asthma. This review summarizes the current knowledge on the physiological and pathophysiological function of the Rho/Rho-kinase mediated pathway in various tissues with a focus on its possible role as a target for therapeutic interventions.


Cancer Cell | 2013

Platelet-Derived Nucleotides Promote Tumor-Cell Transendothelial Migration and Metastasis via P2Y2 Receptor

Dagmar Schumacher; Boris Strilic; Kishor K. Sivaraj; Nina Wettschureck; Stefan Offermanns

Tumor cells can activate platelets, which in turn facilitate tumor cell survival and dissemination. The exact mechanisms by which platelets promote metastasis have remained unclear. Here, we show that adenine nucleotides released from tumor cell-activated platelets induce opening of the endothelial barrier to allow transendothelial migration of tumor cells and thereby promote cancer cell extravasation. We identified the endothelial P2Y2 receptor, which is activated by ATP, as the primary mediator of this effect. Mice deficient in P2Y2 or lacking ATP secretion from platelets show strongly reduced tumor cell metastasis. These findings demonstrate a mechanism by which platelets promote cancer cell metastasis and suggest the P2Y2 receptor and its endothelial downstream signaling mechanisms as a target for antimetastatic therapies.


Journal of Clinical Investigation | 2014

Hydroxycarboxylic acid receptor 2 mediates dimethyl fumarate’s protective effect in EAE

Hui Chen; Julian C. Assmann; Antje Krenz; Mahbubur Rahman; Myriam Grimm; Christian M. Karsten; Jörg Köhl; Stefan Offermanns; Nina Wettschureck; Markus Schwaninger

Taken orally, the drug dimethyl fumarate (DMF) has been shown to improve functional outcomes for patients with MS; however, it is unclear how DMF mediates a protective effect. DMF and, more so, its active metabolite, monomethyl fumarate, are known agonists of the hydroxycarboxylic acid receptor 2 (HCA₂), a G protein-coupled membrane receptor. Here, we evaluated the contribution of HCA₂ in mediating the protective effect afforded by DMF in EAE, a mouse model of MS. DMF treatment reduced neurological deficit, immune cell infiltration, and demyelination of the spinal cords in wild-type mice, but not in Hca2⁻/⁻ mice, indicating that HCA₂ is required for the therapeutic effect of DMF. In particular, DMF decreased the number of infiltrating neutrophils in a HCA₂-dependent manner, likely by interfering with neutrophil adhesion to endothelial cells and chemotaxis. Together, our data indicate that HCA₂ mediates the therapeutic effects of DMF in EAE. Furthermore, identification of HCA₂ as a molecular target may help to optimize MS therapy.


Trends in Pharmacological Sciences | 2008

G12/G13-mediated signalling in mammalian physiology and disease

Thomas Worzfeld; Nina Wettschureck; Stefan Offermanns

The human genome encodes hundreds of G-protein-coupled receptors. Their intracellular effects, however, are mediated by only four families of heterotrimeric G proteins: G(s), G(i)/G(o), G(q)/G(11) and G(12)/G(13). Progress in the knowledge about the G(12)/G(13) family has somewhat lagged behind because their downstream effectors remained unknown for several years, and tools to specifically interfere with G(12)/G(13)-mediated signalling were, therefore, missing. However, with the identification of G(12)/G(13)-regulated signalling pathways and the recent application of new techniques, such as conditional gene inactivation, RNA interference or expression of inhibitory proteins, new insights into the in vivo functions of this G-protein family have been gained. It has become clear that this pathway regulates cellular proliferation, movement and morphology in many different organs and that it is centrally involved in various diseases including cancer and cardiovascular disorders. Here, we focus on recent progress made in the analyses of the in vivo functions of mammalian G(12)/G(13)-mediated signalling.


Journal of Clinical Investigation | 2007

Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and prevents goiter development

Jukka Kero; Kashan Ahmed; Nina Wettschureck; Sorin Tunaru; Tim Wintermantel; Erich Greiner; Günther Schütz; Stefan Offermanns

The function of the adult thyroid is regulated by thyroid-stimulating hormone (TSH), which acts through a G protein-coupled receptor. Overactivation of the TSH receptor results in hyperthyroidism and goiter. The Gs-mediated stimulation of adenylyl cyclase-dependent cAMP formation has been regarded as the principal intracellular signaling mechanism mediating the action of TSH. Here we show that the Gq/G11-mediated signaling pathway plays an unexpected and essential role in the regulation of thyroid function. Mice lacking the alpha subunits of Gq and G11 specifically in thyroid epithelial cells showed severely reduced iodine organification and thyroid hormone secretion in response to TSH, and many developed hypothyroidism within months after birth. In addition, thyrocyte-specific Galphaq/Galpha11-deficient mice lacked the normal proliferative thyroid response to TSH or goitrogenic diet, indicating an essential role of this pathway in the adaptive growth of the thyroid gland. Our data suggest that Gq/G11 and their downstream effectors are promising targets to interfere with increased thyroid function and growth.


Molecular and Cellular Biology | 2006

Forebrain-Specific Inactivation of Gq/G11 Family G Proteins Results in Age-Dependent Epilepsy and Impaired Endocannabinoid Formation

Nina Wettschureck; Mario van der Stelt; Hiroshi Tsubokawa; Heinz Krestel; Alexandra Moers; Stefania Petrosino; Günther Schütz; Vincenzo Di Marzo; Stefan Offermanns

ABSTRACT Metabotropic receptors coupled to Gq/G11 family G proteins critically contribute to nervous system functions by modulating synaptic transmission, often facilitating excitation. We investigated the role of Gq/G11 family G proteins in the regulation of neuronal excitability in mice that selectively lack the α-subunits of Gq and G11, Gαq and Gα11, respectively, in forebrain principal neurons. Surprisingly, mutant mice exhibited increased seizure susceptibility, and the activation of neuroprotective mechanisms was impaired. We found that endocannabinoid levels were reduced under both basal and excitotoxic conditions and that increased susceptibility to kainic acid could be normalized by the enhancement of endocannabinoid levels with an endocannabinoid reuptake inhibitor, while the competitive cannabinoid type 1 receptor antagonist SR141716A did not cause further aggravation. These findings indicate that Gq/G11 family G proteins negatively regulate neuronal excitability in vivo and suggest that impaired endocannabinoid formation in the absence of Gq/G11 contributes to this phenotype.


Journal of Clinical Investigation | 2010

The Gq/G11-mediated signaling pathway is critical for autocrine potentiation of insulin secretion in mice.

Antonia Sassmann; Belinda Gier; Hermann Josef Gröne; Gisela Drews; Stefan Offermanns; Nina Wettschureck

A variety of neurotransmitters, gastrointestinal hormones, and metabolic signals are known to potentiate insulin secretion through GPCRs. We show here that beta cell-specific inactivation of the genes encoding the G protein alpha-subunits Galphaq and Galpha11 resulted in impaired glucose tolerance and insulin secretion in mice. Interestingly, the defects observed in Galphaq/Galpha11-deficient beta cells were not restricted to loss of muscarinic or metabolic potentiation of insulin release; the response to glucose per se was also diminished. Electrophysiological recordings revealed that glucose-induced depolarization of isolated beta cells was impaired in the absence of Galphaq/Galpha11, and closure of KATP channels was inhibited. We provide evidence that this reduced excitability was due to a loss of beta cell-autonomous potentiation of insulin secretion through factors cosecreted with insulin. We identified as autocrine mediators involved in this process extracellular nucleotides such as uridine diphosphate acting through the Gq/G11-coupled P2Y6 receptor and extracellular calcium acting through the calcium-sensing receptor. Thus, the Gq/G11-mediated signaling pathway potentiates insulin secretion in response to glucose by integrating systemic as well as autocrine/paracrine mediators.


Journal of Clinical Investigation | 2016

Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release

Shengpeng Wang; Ramesh Chennupati; Harmandeep Kaur; Andras Iring; Nina Wettschureck; Stefan Offermanns

Arterial blood pressure is controlled by vasodilatory factors such as nitric oxide (NO) that are released from the endothelium under the influence of fluid shear stress exerted by flowing blood. Flow-induced endothelial release of ATP and subsequent activation of Gq/G11-coupled purinergic P2Y2 receptors have been shown to mediate fluid shear stress-induced stimulation of NO formation. However, the mechanism by which fluid shear stress initiates these processes is unclear. Here, we have shown that the endothelial mechanosensitive cation channel PIEZO1 is required for flow-induced ATP release and subsequent P2Y2/Gq/G11-mediated activation of downstream signaling that results in phosphorylation and activation of AKT and endothelial NOS. We also demonstrated that PIEZO1-dependent ATP release is mediated in part by pannexin channels. The PIEZO1 activator Yoda1 mimicked the effect of fluid shear stress on endothelial cells and induced vasorelaxation in a PIEZO1-dependent manner. Furthermore, mice with induced endothelium-specific PIEZO1 deficiency lost the ability to induce NO formation and vasodilation in response to flow and consequently developed hypertension. Together, our data demonstrate that PIEZO1 is required for the regulation of NO formation, vascular tone, and blood pressure.

Collaboration


Dive into the Nina Wettschureck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Günther Schütz

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge