Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ning Zhu is active.

Publication


Featured researches published by Ning Zhu.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates Arabidopsis innate immunity

Wenwei Lin; Bo Li; Dongping Lu; Sixue Chen; Ning Zhu; Ping He; Libo Shan

Significance The innate immune response is initiated by the recognition of conserved microbial signatures via membrane-resident receptor complex. The dimerization and phosphorylation of Arabidopsis protein kinase complex FLS2/BAK1/BIK1 is essential to initiate and transduce immune signaling to bacterial flagellin. BIK1, a classic serine/threonine kinase, was found here to be autophosphorylated and transphosphorylated by BAK1 at multiple tyrosine residues to relay plant immune signaling. The essential function of tyrosine kinase activity of BIK1 in plants echoes the function of nonreceptor tyrosine kinases that transduce receptor tyrosine kinase signaling via dimerization and phosphorylation in metazoans. Thus, despite lack of classical tyrosine kinases, tyrosine phosphorylation is also an important regulatory mechanism to control membrane-resident receptor signaling in plants. The sessile plants have evolved a large number of receptor-like kinases (RLKs) and receptor-like cytoplasmic kinases (RLCKs) to modulate diverse biological processes, including plant innate immunity. Phosphorylation of the RLK/RLCK complex constitutes an essential step to initiate immune signaling. Two Arabidopsis plasma membrane-resident RLKs, flagellin-sensing 2 and brassinosteroid insensitive 1-associated kinase 1 (BAK1), interact with RLCK Botrytis-induced kinase 1 (BIK1) to initiate plant immune responses to bacterial flagellin. BAK1 directly phosphorylates BIK1 and positively regulates plant immunity. Classically defined as a serine/threonine kinase, BIK1 is shown here to possess tyrosine kinase activity with mass spectrometry, immunoblot, and genetic analyses. BIK1 is autophosphorylated at multiple tyrosine (Y) residues in addition to serine/threonine residues. Importantly, BAK1 is able to phosphorylate BIK1 at both tyrosine and serine/threonine residues. BIK1Y150 is likely catalytically important as the mutation blocks both tyrosine and serine/threonine kinase activity, whereas Y243 and Y250 are more specifically involved in tyrosine phosphorylation. The BIK1 tyrosine phosphorylation plays a crucial role in BIK1-mediated plant innate immunity as the transgenic plants carrying BIK1Y150F, Y243F, or Y250F (the mutation of tyrosine to phenylalanine) failed to complement the bik1 mutant deficiency in immunity. Our data indicate that plant RLCK BIK1 is a nonreceptor dual-specificity kinase and both tyrosine and serine/threonine kinase activities are required for its functions in plant immune signaling. Together with the previous finding of BAK1 to be autophosphorylated at tyrosine residues, our results unveiled the tyrosine phosphorylation cascade as a common regulatory mechanism that controls membrane-resident receptor signaling in plants and metazoans.


New Phytologist | 2012

Comparative proteomics of the recently and recurrently formed natural allopolyploid Tragopogon mirus (Asteraceae) and its parents

Jin Koh; Sixue Chen; Ning Zhu; Fahong Yu; Pamela S. Soltis; Douglas E. Soltis

• We examined the proteomes of the recently formed natural allopolyploid Tragopogon mirus and its diploid parents (T. dubius, T. porrifolius), as well as a diploid F(1) hybrid and synthetic T. mirus. • Analyses using iTRAQ LC-MS/MS technology identified 476 proteins produced by all three species. Of these, 408 proteins showed quantitative additivity of the two parental profiles in T. mirus (both natural and synthetic); 68 proteins were quantitatively differentially expressed. • Comparison of F(1) hybrid, and synthetic and natural polyploid T. mirus with the parental diploid species revealed 32 protein expression changes associated with hybridization, 22 with genome doubling and 14 that had occurred since the origin of T. mirus c. 80 yr ago. We found six proteins with novel expression; this phenomenon appears to start in the F(1) hybrid and results from post-translational modifications. • Our results indicate that the impact of hybridization on the proteome is more important than is polyploidization. Furthermore, two cases of homeolog-specific expression in T. mirus suggest that silencing in T. mirus was not associated with hybridization itself, but occurred subsequent to both hybridization and polyploidization. This study has shown the utility of proteomics in the analysis of the evolutionary consequences of polyploidy.


Journal of Proteomics | 2010

Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging.

Mengmeng Zhu; Brigitte Simons; Ning Zhu; David G. Oppenheimer; Sixue Chen

Guard cells, which form stomata on the leaf epidermis, play important roles in plant gas exchange and defense against pathogens. Abscisic acid (ABA) is a phytohormone that can be induced by drought and leads to stomatal closure. Guard cells have been a premier model system for studying ABA signal transduction. Despite significant progress on the identification of molecular components in the ABA signaling pathway, our knowledge of the protein components is very limited. Here, we employ a recently developed multiplexed isobaric tagging technology to identify ABA-responsive proteins in Brassica napus guard cells. A total of 431 unique proteins were identified with relative quantitative information in control and ABA-treated samples. Proteins involved in stress and defense constituted a major group among the 66 proteins with increased abundance. Thirty-eight proteins were decreased in abundance and fell into several functional groups including metabolism and protein synthesis. Many of the proteins have not been reported as being ABA responsive or involved in stomatal movement. A large percentage of the protein-coding genes contained ABA-responsive elements. This study not only established a comprehensive inventory of ABA-responsive proteins, but also identified new proteins for further investigation of their functions in guard cell ABA signaling.


Molecular Plant | 2012

Proteomics and Metabolomics of Arabidopsis Responses to Perturbation of Glucosinolate Biosynthesis

Yazhou Chen; Qiuying Pang; Yan He; Ning Zhu; Isabel Branstrom; Xiufeng Yan; Sixue Chen

To understand plant molecular networks of glucosinolate metabolism, perturbation of aliphatic glucosinolate biosynthesis was established using inducible RNA interference (RNAi) in Arabidopsis. Two RNAi lines were chosen for examining global protein and metabolite changes using complementary proteomics and metabolomics approaches. Proteins involved in metabolism including photosynthesis and hormone metabolism, protein binding, energy, stress, and defense showed marked responses to glucosinolate perturbation. In parallel, metabolomics revealed major changes in the levels of amino acids, carbohydrates, peptides, and hormones. The metabolomics data were correlated with the proteomics results and revealed intimate molecular connections between cellular pathways/processes and glucosinolate metabolism. This study has provided an unprecedented view of the molecular networks of glucosinolate metabolism and laid a foundation towards rationale glucosinolate engineering for enhanced defense and quality.


Journal of Proteome Research | 2015

Comparative Proteomic Analysis of Brassica napus in Response to Drought Stress

Jin Koh; Gang Chen; Mi-Jeong Yoo; Ning Zhu; Daniel Dufresne; John E. Erickson; Hongbo Shao; Sixue Chen

Drought is one of the most widespread stresses leading to retardation of plant growth and development. We examined proteome changes of an important oil seed crop, canola (Brassica napus L.), under drought stress over a 14-day period. Using iTRAQ LC-MS/MS, we identified 1976 proteins expressed during drought stress. Among them, 417 proteins showed significant changes in abundance, and 136, 244, 286, and 213 proteins were differentially expressed in the third, seventh, 10th, and 14th day of stress, respectively. Functional analysis indicated that the number of proteins associated with metabolism, protein folding and degradation, and signaling decreased, while those related to energy (photosynthesis), protein synthesis, and stress and defense increased in response to drought stress. The seventh and 10th-day profiles were similar to each other but with more post-translational modifications (PTMs) at day 10. Interestingly, 181 proteins underwent PTMs; 49 of them were differentially changed in drought-stressed plants, and 33 were observed at the 10th day. Comparison of protein expression changes with those of gene transcription showed a positive correlation in B. napus, although different patterns between transcripts and proteins were observed at each time point. Under drought stress, most protein abundance changes may be attributed to gene transcription, and PTMs clearly contribute to protein diversity and functions.


Journal of Proteome Research | 2012

Methyl jasmonate responsive proteins in Brassica napus guard cells revealed by iTRAQ-based quantitative proteomics.

Mengmeng Zhu; Shaojun Dai; Ning Zhu; Aaron Booy; Brigitte Simons; Sarah Yi; Sixue Chen

Stomata on leaf epidermis formed by pairs of guard cells control CO(2) intake and water transpiration, and respond to different environmental conditions. Stress-induced stomatal closure is mediated via an intricate hormone network in guard cells. Although methyl jasmonate (MeJA) has been intensively studied for its function in plant defense, the molecular mechanisms underlying its function in stomatal movement are not fully understood. Here we report the effects of MeJA on Brassica napus stomatal movement and H(2)O(2) production. Using the isobaric tags for relative and absolute quantitation (iTRAQ) approach, we have identified 84 MeJA-responsive proteins in B. napus guard cells. Most of the genes encoding these proteins contain jasmonate-responsive elements in the promoters, indicating that they are potentially regulated at the transcriptional level. Among the identified proteins, five protein changes after MeJA treatment were validated using Western blot analysis. The identification of the MeJA-responsive proteins has revealed interesting molecular mechanisms underlying MeJA function in guard cells, which include homeostasis of H(2)O(2) production and scavenging, signaling through calcium oscillation and protein (de)phosphorylation, gene transcription, protein modification, energy balance, osmoregulation, and cell shape modulation. The knowledge of the MeJA-responsive proteins has improved our understanding of MeJA signaling in stomatal movement, and it may be applied to crop engineering for enhanced yield and stress tolerance.


Journal of Proteome Research | 2013

Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14.

Le Yang; Yanjun Zhang; Ning Zhu; Jin Koh; Chunquan Ma; Yu Pan; Bing Yu; Sixue Chen; Haiying Li

Understanding the mechanisms of plant salinity tolerance can facilitate plant engineering for enhanced salt stress tolerance. Sugar beet monosomic addition line M14 obtained from the intercross between Beta vulgaris L. and Beta corolliflora Zoss exhibits tolerance to salt stress. Here we report the salt-responsive characteristics of the M14 plants under 0, 200, and 400 mM NaCl conditions using quantitative proteomics approaches. Proteins from control and the salt treated M14 plants were separated using 2D-DIGE. Eighty-six protein spots representing 67 unique proteins in leaves and 22 protein spots representing 22 unique proteins in roots were identified. In addition, iTRAQ LC-MS/MS was employed to identify and quantify differentially expressed proteins under salt stress. Seventy-five differentially expressed proteins in leaves and 43 differentially expressed proteins in roots were identified. The proteins were mainly involved in photosynthesis, energy, metabolism, protein folding and degradation, and stress and defense. Moreover, gene transcription data obtained from the same samples were compared to the corresponding protein data. Thirteen proteins in leaves and 12 in roots showed significant correlation in gene expression and protein levels. These results suggest the important processes for the M14 tolerance to salt stress include enhancement of photosynthesis and energy metabolism, accumulation of osmolyte and antioxidant enzymes, and regulation of methionine metabolism and ion uptake/exclusion.


ACS Applied Materials & Interfaces | 2015

Gold Nanoparticle-Enabled Blood Test for Early Stage Cancer Detection and Risk Assessment

Tianyu Zheng; Nickisha Pierre-Pierre; Xin Yan; Qun Huo; Alvin J.O. Almodovar; Felipe Valerio; Inoel Rivera-Ramirez; Elizabeth Griffith; David D. Decker; Sixue Chen; Ning Zhu

When citrate ligands-capped gold nanoparticles are mixed with blood sera, a protein corona is formed on the nanoparticle surface due to the adsorption of various proteins in the blood to the nanoparticles. Using a two-step gold nanoparticle-enabled dynamic light scattering assay, we discovered that the amount of human immunoglobulin G (IgG) in the gold nanoparticle protein corona is increased in prostate cancer patients compared to noncancer controls. Two pilot studies conducted on blood serum samples collected at Florida Hospital and obtained from Prostate Cancer Biorespository Network (PCBN) revealed that the test has a 90-95% specificity and 50% sensitivity in detecting early stage prostate cancer, representing a significant improvement over the current PSA test. The increased amount of human IgG found in the protein corona is believed to be associated with the autoantibodies produced in cancer patients as part of the immunodefense against tumor. Proteomic analysis of the nanoparticle protein corona revealed molecular profile differences between cancer and noncancer serum samples. Autoantibodies and natural antibodies produced in cancer patients in response to tumorigenesis have been found and detected in the blood of many cancer types. The test may be applicable for early detection and risk assessment of a broad spectrum of cancer. This new blood test is simple, low cost, requires only a few drops of blood sample, and the results are obtained within minutes. The test is well suited for screening purpose. More extensive studies are being conducted to further evaluate and validate the clinical potential of the new test.


Proteomics | 2013

Quantitative proteomics of tomato defense against Pseudomonas syringae infection

Jennifer Parker; Jin Koh; Mi-Jeong Yoo; Ning Zhu; Michelle Feole; Sarah Yi; Sixue Chen

Genetic and microarray analyses have provided useful information in the area of plant and pathogen interactions. Pseudomonas syringae pv. tomato DC3000 (Pst) causes bacterial speck disease in tomato. Previous studies have shown that changes in response to pathogen infection at transcript level are variable at different time points. This study provides information not only on proteomic changes between a resistant and a susceptible genotype, but also information on changes between an early and a late time point. Using the iTRAQ quantitative proteomics approach, we have identified 2369 proteins in tomato leaves, and 477 of them were determined to be responsive to Pst inoculation. Unique and differential proteins after each comparison were further analyzed to provide information about protein changes and the potential functions they play in the pathogen response. This information is applicable not only to tomato proteomics, but also adds to the repertoire of proteins now available for crop proteomic analysis and how they change in response to pathogen infection.


Molecular & Cellular Proteomics | 2015

cysTMTRAQ-an integrative method for unbiased thiol-based redox proteomics

Jennifer Parker; Kelly Balmant; Fanchao Zhu; Ning Zhu; Sixue Chen

Protein redox regulation plays important roles in many biological processes. Protein cysteine thiols are sensitive to redox changes and may function as redox switches, which turn signaling and metabolic pathways on or off to ensure speedy responses to environmental stimuli or stresses. Here we report a novel integrative proteomics method called cysTMTRAQ that combines two types of isobaric tags, cysteine tandem mass tags and isobaric tag for relative and absolute quantification, in one experiment. The method not only enables simultaneous analysis of cysteine redox changes and total protein level changes, but also allows the determination of bona fide redox modified cysteines in proteins through the correction of protein turnover. Overlooking the factor of protein-level changes in the course of protein posttranslational modification experiments could lead to misleading results. The capability to analyze protein posttranslational modification dynamics and protein-level changes in one experiment will advance proteomic studies in many areas of biology and medicine.

Collaboration


Dive into the Ning Zhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig Dufresne

Thermo Fisher Scientific

View shared research outputs
Top Co-Authors

Avatar

Jin Koh

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaojun Dai

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sisi Geng

University of Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge