Ninghao Liu
Texas A&M University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ninghao Liu.
International Journal of Distributed Sensor Networks | 2013
Xiangyu Yu; Ninghao Liu; Weipeng Huang; Xin Qian; Tao Zhang
The effectiveness of wireless sensor networks (WSN) depends on the regional coverage provided by node deployment, which is one of the key topics in WSN. Virtual force-based algorithms (VFA) are popular approaches for this problem. In VFA, all nodes are seen as points subject to repulsive and attractive force exerted among them and can move according to the calculated force. In this paper, a sensor deployment algorithm for mobile WSN based on van der Waals force is proposed. Friction force is introduced into the equation of force, the relationship of adjacency of nodes is defined by Delaunay triangulation, and the force calculated produce acceleration for nodes to move. An evaluation metric called pair correlation function is introduced here to evaluate the uniformity of the node distribution. Simulation results and comparisons have showed that the proposed approach has higher coverage rate, more uniformity in configuration, and moderate convergence time compared to some other virtual force algorithms.
international joint conference on artificial intelligence | 2017
Ninghao Liu; Xiao Huang; Xia Hu
Attributed networks, in which network connectivity and node attributes are available, have been increasingly used to model real-world information systems, such as social media and e-commerce platforms. While outlier detection has been extensively studied to identify anomalies that deviate from certain chosen background, existing algorithms cannot be directly applied on attributed networks due to the heterogeneous types of information and the scale of real-world data. Meanwhile, it has been observed that local anomalies, which may align with global condition, are hard to be detected by existing algorithms with interpretability. Motivated by the observations, in this paper, we propose to study the problem of effective and efficient local anomaly detection in attributed networks. In particular, we design a collective way for modeling heterogeneous network and attribute information, and develop a novel and efficient distributed optimization algorithm to handle large-scale data. In the experiments, we compare the proposed framework with the state-of-the-art methods on both real and synthetic datasets, and demonstrate its effectiveness and efficiency through quantitative evaluation and case studies.
International Journal of Advanced Robotic Systems | 2014
Xiangyu Yu; Ninghao Liu; Xin Qian; Tao Zhang
Robotic sensor deployment is fundamental for the effectiveness of wireless robot sensor networks-a good deployment algorithm leads to good coverage and connectivity with low energy consumption for the whole network. Virtual force-based algorithms (VFAs) is one of the most popular approaches to this problem. In VFA, sensors are treated as points subject to repulsive and attractive forces exerted among them-sensors can move according to imaginary force generated in algorithms. In this paper, a virtual spring force-based algorithm with proper damping is proposed for the deployment of sensor nodes in a wireless sensor network (WSN). A new metric called Pair Correlation Diversion (PCD) is introduced to evaluate the uniformity of the sensor distribution. Numerical simulations showed that damping can affect the network coverage, energy consumption, convergence time and general topology in the deployment. Moreover, it was found that damping effect (imaginary friction force) has significant influence on algorithm outcomes. In addition, when working under approximate critical-damping condition, the proposed approach has the advantage of a higher coverage rate, better configurational uniformity and less energy consumption.
knowledge discovery and data mining | 2018
Mengnan Du; Ninghao Liu; Qingquan Song; Xia Hu
While deep neural networks (DNN) have become an effective computational tool, the prediction results are often criticized by the lack of interpretability, which is essential in many real-world applications such as health informatics. Existing attempts based on local interpretations aim to identify relevant features contributing the most to the prediction of DNN by monitoring the neighborhood of a given input. They usually simply ignore the intermediate layers of the DNN that might contain rich information for interpretation. To bridge the gap, in this paper, we propose to investigate a guided feature inversion framework for taking advantage of the deep architectures towards effective interpretation. The proposed framework not only determines the contribution of each feature in the input but also provides insights into the decision-making process of DNN models. By further interacting with the neuron of the target category at the output layer of the DNN, we enforce the interpretation result to be class-discriminative. We apply the proposed interpretation model to different CNN architectures to provide explanations for image data and conduct extensive experiments on ImageNet and PASCAL VOC07 datasets. The interpretation results demonstrate the effectiveness of our proposed framework in providing class-discriminative interpretation for DNN-based prediction.
knowledge discovery and data mining | 2018
Ninghao Liu; Hongxia Yang; Xia Hu
Machine learning (ML) systems have been increasingly applied in web security applications such as spammer detection, malware detection and fraud detection. These applications have an intrinsic adversarial nature where intelligent attackers can adaptively change their behaviors to avoid being detected by the deployed detectors. Existing efforts against adversaries are usually limited by the type of applied ML models or the specific applications such as image classification. Additionally, the working mechanisms of ML models usually cannot be well understood by users, which in turn impede them from understanding the vulnerabilities of models nor improving their robustness. To bridge the gap, in this paper, we propose to investigate whether model interpretation could potentially help adversarial detection. Specifically, we develop a novel adversary-resistant detection framework by utilizing the interpretation of ML models. The interpretation process explains the mechanism of how the target ML model makes prediction for a given instance, thus providing more insights for crafting adversarial samples. The robustness of detectors is then improved through adversarial training with the adversarial samples. A data-driven method is also developed to empirically estimate costs of adversaries in feature manipulation. Our approach is model-agnostic and can be applied to various types of classification models. Our experimental results on two real-world datasets demonstrate the effectiveness of interpretation-based attacks and how estimated feature manipulation cost would affect the behavior of adversaries.
Journal of Healthcare Engineering | 2017
Jun Gao; Ninghao Liu; Mark Lawley; Xia Hu
Online healthcare forums (OHFs) have become increasingly popular for patients to share their health-related experiences. The healthcare-related texts posted in OHFs could help doctors and patients better understand specific diseases and the situations of other patients. To extract the meaning of a post, a commonly used way is to classify the sentences into several predefined categories of different semantics. However, the unstructured form of online posts brings challenges to existing classification algorithms. In addition, though many sophisticated classification models such as deep neural networks may have good predictive power, it is hard to interpret the models and the prediction results, which is, however, critical in healthcare applications. To tackle the challenges above, we propose an effective and interpretable OHF post classification framework. Specifically, we classify sentences into three classes: medication, symptom, and background. Each sentence is projected into an interpretable feature space consisting of labeled sequential patterns, UMLS semantic types, and other heuristic features. A forest-based model is developed for categorizing OHF posts. An interpretation method is also developed, where the decision rules can be explicitly extracted to gain an insight of useful information in texts. Experimental results on real-world OHF data demonstrate the effectiveness of our proposed computational framework.Online healthcare forums (OHFs) have become increasingly popular for patients to share their health-related experiences. The healthcare-related texts posted in OHFs could help doctors and patients better understand specific diseases and the situations of other patients. To extract the meaning of a post, a commonly used way is to classify the sentences into several predefined categories of different semantics. However, the unstructured form of online posts brings challenges to existing classification algorithms. In addition, though many sophisticated classification models such as deep neural networks may have good predictive power, it is hard to interpret the models and the prediction results, which is, however, critical in healthcare applications. To tackle the challenges above, we propose an effective and interpretable OHF post classification framework. Specifically, we classify sentences into three classes: medication, symptom, and background. Each sentence is projected into an interpretable feature space consisting of labeled sequential patterns, UMLS semantic types, and other heuristic features. A forest-based model is developed for categorizing OHF posts. An interpretation method is also developed, where the decision rules can be explicitly extracted to gain an insight of useful information in texts. Experimental results on real-world OHF data demonstrate the effectiveness of our proposed computational framework.
knowledge discovery and data mining | 2018
Ninghao Liu; Xiao Huang; Jundong Li; Xia Hu
Network embedding has been increasingly used in many network analytics applications to generate low-dimensional vector representations, so that many off-the-shelf models can be applied to solve a wide variety of data mining tasks. However, similar to many other machine learning methods, network embedding results remain hard to be understood by users. Each dimension in the embedding space usually does not have any specific meaning, thus it is difficult to comprehend how the embedding instances are distributed in the reconstructed space. In addition, heterogeneous content information may be incorporated into network embedding, so it is challenging to specify which source of information is effective in generating the embedding results. In this paper, we investigate the interpretation of network embedding, aiming to understand how instances are distributed in embedding space, as well as explore the factors that lead to the embedding results. We resort to the post-hoc interpretation scheme, so that our approach can be applied to different types of embedding methods. Specifically, the interpretation of network embedding is presented in the form of a taxonomy. Effective objectives and corresponding algorithms are developed towards building the taxonomy. We also design several metrics to evaluate interpretation results. Experiments on real-world datasets from different domains demonstrate that, by comparing with the state-of-the-art alternatives, our approach produces effective and meaningful interpretation to embedding results.
international joint conference on artificial intelligence | 2018
Ninghao Liu; Donghwa Shin; Xia Hu
Outlier detection plays an essential role in many data-driven applications to identify isolated instances that are different from the majority. While many statistical learning and data mining techniques have been used for developing more effective outlier detection algorithms, the interpretation of detected outliers does not receive much attention. Interpretation is becoming increasingly important to help people trust and evaluate the developed models through providing intrinsic reasons why the certain outliers are chosen. It is difficult, if not impossible, to simply apply feature selection for explaining outliers due to the distinct characteristics of various detection models, complicated structures of data in certain applications, and imbalanced distribution of outliers and normal instances. In addition, the role of contrastive contexts where outliers locate, as well as the relation between outliers and contexts, are usually overlooked in interpretation. To tackle the issues above, in this paper, we propose a novel Contextual Outlier INterpretation (COIN) method to explain the abnormality of existing outliers spotted by detectors. The interpretability for an outlier is achieved from three aspects: outlierness score, attributes that contribute to the abnormality, and contextual description of its neighborhoods. Experimental results on various types of datasets demonstrate the flexibility and effectiveness of the proposed framework compared with existing interpretation approaches.
international conference on communications | 2014
Jing Lu; Zuming Huang; Ninghao Liu; Quansheng Guan
Eurasip Journal on Bioinformatics and Systems Biology | 2016
Xia Hu; Peter D. Reaven; Aramesh Saremi; Ninghao Liu; Mohammad Ali Abbasi; Huan Liu; Raymond Q. Migrino