Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ningxi Zhu is active.

Publication


Featured researches published by Ningxi Zhu.


Journal of Biological Chemistry | 2006

KLF5 Interacts with p53 in Regulating Survivin Expression in Acute Lymphoblastic Leukemia

Ningxi Zhu; Lubing Gu; Harry W. Findley; Ceshi Chen; Jin-Tang Dong; Lily Yang; Muxiang Zhou

The Kruppel-like factor 5 (KLF5) is a transcription factor that regulates cellular signaling involved in cell proliferation and oncogenesis. Here, we report that KLF5 interacts with tumor suppressor p53 in regulating the expression of the inhibitor-of-apoptosis protein survivin, which may play a role in pathological process of cancer. The core promoter region of survivin contains multiple GT-boxes that have been characterized as KLF5 response elements. Deletion and mutation analyses as well as chromatin immunoprecipitation and electronic mobility shift assay indicated that KLF5 binds to the core survivin promoter and strongly induces its activity. Furthermore, we demonstrated that KLF5 protein is able to bind to p53 and abrogate the p53-regulated repression of survivin. Transfection of KLF5 into a KLF5-negative acute lymphoblastic leukemia cell line EU-8 enhanced survivin expression, and conversely, silencing of KLF5 by small interfering RNA in a KLF5-overexpressing acute lymphoblastic leukemia cell line EU-4 down-regulated survivin expression. The KLF5 small interfering RNA-mediated down-regulation of survivin sensitized EU-4 cells to apoptosis induced by chemotherapeutic drug doxorubicin. These findings identify a novel regulatory pathway for the expression of survivin under the control of KLF5 and p53. Deregulation of this pathway may result in overexpression of survivin in cancer, thus contributing to drug resistance.


Oncogene | 2004

An alternatively spliced survivin variant is positively regulated by p53 and sensitizes leukemia cells to chemotherapy

Ningxi Zhu; Lubing Gu; Harry W. Findley; Fengzhi Li; Muxiang Zhou

Survivin is a unique member of the inhibitor of apoptosis protein family, and its expression is regulated by p53. Recent identification of several functionally divergent survivin variants augments the complexity of survivin action as well as its regulation. Here we report that survivin-2B (retaining a part of intron 2 as a cryptic exon) is positively regulated by p53, and its overexpression plays a role in sensitizing leukemia cells to chemotherapeutic drug doxorubicin. Doxorubicin treatment activated p53, downregulated survivin and survivin-ΔEx3 but upregulated survivin-2B in EU-3, an acute lymphocytic leukemia (ALL) cell line with wild-type (wt)-p53 phenotype. In contrast, doxorubicin treatment failed to induce these alterations in EU-6 cells, a mutant-p53 ALL cell line. To specify the role of wt-p53 in regulating survivin and its variants, a temperature-sensitive p53 mutant plasmid p53-143 was transfected into EU-4, a p53-null ALL cell line, to establish a subline EU-4/p53-143. When EU-4/p53-143 cell culture was shifted from 37.5°C to the wt-p53-permissive temperature (32.5°C), the expression of survivin and survivin-ΔEx3 was decreased whereas survivin-2B expression was increased, confirming the distinct regulatory effect of p53 on survivin and its variants. To clarify the role of survivin-2B in the process of apoptosis, survivin-2B cDNA was cloned into pcDNA3HA vector and transfected into EU-4 cells. Enforced expression of survivin-2B in EU-4 cells inhibited cell growth and sensitized these cells to doxorubicin-induced apoptosis. These results suggest that survivin-2B variant is a proapoptotic factor and its expression is upregulated by p53.


Oncogene | 2003

Transfection of a dominant-negative mutant NF-kB inhibitor (IkBm) represses p53-dependent apoptosis in acute lymphoblastic leukemia cells: interaction of IkBm and p53

Muxiang Zhou; Lubing Gu; Ningxi Zhu; William G. Woods; Harry W. Findley

To investigate the possible role of inhibiting NF-kB activation in sensitizing tumor cells to chemotherapy-induced apoptosis, we transfected the dominant-negative mutant inhibitor of NF-kB (IkBm) into the EU-1 cell line, an acute lymphoblastic leukemia (ALL) line with constitutive NF-kB activation. Overexpression of IkBm significantly reduced constitutive NF-kB activity in EU-1 cells, resulting in decreased cell growth. In response to apoptosis induced by chemotherapeutic drugs, IkBm-transfected cells (EU-1/IkBm) exhibited increased sensitivity to vincristine (VCR), whereas sensitivity to doxorubicin (Dox) was not changed as compared to neo-transfected control (EU-1/neo) cells. To further evaluate the link between IkBm and sensitivity to Dox and VCR, we demonstrated that both endogenous IkBα and ectopic IkBm bind to p53. In response to Dox, the cytosolic p53.IkBα complex rapidly dissociated due to downregulation of IkBα. However, the p53.IkBm complex did not dissociate under these conditions. Although treatment of EU-1/IkBm cells with Dox increased the expression of p53, the nondissociating p53.IkBm complex resulted in decreased p53 function, as demonstrated by absence of cell-cycle arrest and induction of p53 target genes. Contrastingly, VCR-induced cell death neither downregulated IkBα nor induced p53, as shown by the lack of NF-kB activation and p53-mediated gene expression in VCR-treated cells. Our data suggest that IkBm simultaneously downregulates NF-kB activation and sequesters p53 in the cytoplasm, thus enhancing NF-kB-regulated apoptosis but blocking p53-dependent apoptosis.


BMC Cancer | 2008

Tissue factor/FVIIa activates Bcl-2 and prevents doxorubicin-induced apoptosis in neuroblastoma cells

Jun Fang; Lubing Gu; Ningxi Zhu; Hao Tang; Carlos S. Alvarado; Muxiang Zhou

BackgroundTissue factor (TF) is a transmembrane protein that acts as a receptor for activated coagulation factor VII (FVIIa), initiating the coagulation cascade. Recent studies demonstrate that expression of tumor-derived TF also mediates intracellular signaling relevant to tumor growth and apoptosis. Our present study investigates the possible mechanism by which the interaction between TF and FVIIa regulates chemotherapy resistance in neuroblastoma cell lines.MethodsGene and siRNA transfection was used to enforce TF expression in a TF-negative neuroblastoma cell line and to silence endogenous TF expression in a TF-overexpressing neuroblastoma line, respectively. The expression of TF, Bcl-2, STAT5, and Akt as well as the phosphorylation of STAT5 and Akt in gene transfected cells or cells treated with JAK inhibitor and LY294002 were determined by Western blot assay. Tumor cell growth was determined by a clonogenic assay. Cytotoxic and apoptotic effect of doxorubicin on neuroblastoma cell lines was analyzed by WST assay and annexin-V staining (by flow cytometry) respectively.ResultsEnforced expression of TF in a TF-negative neuroblastoma cell line in the presence of FVIIa induced upregulation of Bcl-2, leading to resistance to doxorubicin. Conversely, inhibition of endogenous TF expression in a TF-overexpressing neuroblastoma cell line using siRNA resulted in down-regulation of Bcl-2 and sensitization to doxorubicin-induced apoptosis. Additionally, neuroblastoma cells expressing high levels of either endogenous or transfected TF treated with FVIIa readily phosphorylated STAT5 and Akt. Using selective pharmacologic inhibitors, we demonstrated that JAK inhibitor I, but not the PI3K inhibitor LY294002, blocked the TF/FVIIa-induced upregulation of Bcl-2.ConclusionThis study shows that in neuroblastoma cell lines overexpressed TF ligated with FVIIa produced upregulation of Bcl-2 expression through the JAK/STAT5 signaling pathway, resulting in resistance to apoptosis. We surmise that this TF-FVIIa pathway may contribute, at least in part, to chemotherapy resistance in neuroblastoma.


Leukemia | 2006

Endogenous TNF α mediates cell survival and chemotherapy resistance by activating the PI3K/Akt pathway in acute lymphoblastic leukemia cells

Lubing Gu; Harry W. Findley; Ningxi Zhu; Muxiang Zhou

Endogenous TNF α mediates cell survival and chemotherapy resistance by activating the PI3K/Akt pathway in acute lymphoblastic leukemia cells


Cancer Cell | 2009

Regulation of XIAP Translation and Induction by MDM2 following Irradiation

Lubing Gu; Ningxi Zhu; Hongying Zhang; Donald L. Durden; Yue Feng; Muxiang Zhou


Leukemia | 2008

MDM2 antagonist nutlin-3 is a potent inducer of apoptosis in pediatric acute lymphoblastic leukemia cells with wild-type p53 and overexpression of MDM2

Lubing Gu; Ningxi Zhu; Harry W. Findley; Muxiang Zhou


Journal of Biological Chemistry | 2004

Identification and Characterization of the IKKα Promoter POSITIVE AND NEGATIVE REGULATION BY ETS-1 AND p53, RESPECTIVELY

Lubing Gu; Ningxi Zhu; Harry W. Findley; William G. Woods; Muxiang Zhou


Biochemical and Biophysical Research Communications | 2005

Transcriptional repression of the eukaryotic initiation factor 4E gene by wild type p53.

Ningxi Zhu; Lubing Gu; Harry W. Findley; Muxiang Zhou


Experimental Hematology | 2007

Contribution of STAT3 to the activation of survivin by GM-CSF in CD34+ cell lines

Lubing Gu; Kuang-Yueh Chiang; Ningxi Zhu; Harry W. Findley; Muxiang Zhou

Collaboration


Dive into the Ningxi Zhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge