Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ningyan Zhang is active.

Publication


Featured researches published by Ningyan Zhang.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Pentameric complex of viral glycoprotein H is the primary target for potent neutralization by a human cytomegalovirus vaccine

Daniel C. Freed; Qi Tang; Aimin Tang; Fengsheng Li; Xi He; Zhao Huang; Weixu Meng; Lin Xia; Adam C. Finnefrock; Eberhard Durr; Amy S. Espeseth; Danilo R. Casimiro; Ningyan Zhang; John W. Shiver; Dai Wang; Zhiqiang An; Tong Ming Fu

Significance Congenital human cytomegalovirus (HCMV) infection is an important cause of newborn disability, and developing a vaccine against congenital HCMV is a top priority. However, despite decades of efforts, a vaccine remains elusive. Previous vaccines lacked an antigen called pentameric glycoprotein H (gH) complex, essential for the virus to infect epithelial/endothelial cells, and these vaccines induced poor neutralizing antibodies. To support a unique vaccine concept featuring the pentameric gH complex, we established 45 mAbs from a rabbit immunized with an experimental vaccine. Over 50% of the mAbs have antiviral activity, and potent clones target the pentameric gH complex, thus establishing this antigen as the key for potent antiviral antibodies by vaccination. Our result contributes to the understanding of immune attributes of an effective vaccine against HCMV. Human cytomegalovirus (HCMV) can cause serious morbidity/mortality in transplant patients, and congenital HCMV infection can lead to birth defects. Developing an effective HCMV vaccine is a high medical priority. One of the challenges to the efforts has been our limited understanding of the viral antigens important for protective antibodies. Receptor-mediated viral entry to endothelial/epithelial cells requires a glycoprotein H (gH) complex comprising five viral proteins (gH, gL, UL128, UL130, and UL131). This gH complex is notably missing from HCMV laboratory strains as well as HCMV vaccines previously evaluated in the clinic. To support a unique vaccine concept based on the pentameric gH complex, we established a panel of 45 monoclonal antibodies (mAbs) from a rabbit immunized with an experimental vaccine virus in which the expression of the pentameric gH complex was restored. Over one-half (25 of 45) of the mAbs have neutralizing activity. Interestingly, affinity for an antibody to bind virions was not correlated with its ability to neutralize the virus. Genetic analysis of the 45 mAbs based on their heavy- and light-chain sequences identified at least 26 B-cell linage groups characterized by distinct binding or neutralizing properties. Moreover, neutralizing antibodies possessed longer complementarity-determining region 3 for both heavy and light chains than those with no neutralizing activity. Importantly, potent neutralizing mAbs reacted to the pentameric gH complex but not to gB. Thus, the pentameric gH complex is the primary target for antiviral antibodies by vaccination.


mAbs | 2011

Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study.

Ningyan Zhang; Liming Liu; Calin Dan Dumitru; Nga Rewa Houston Cummings; Michael Cukan; Youwei Jiang; Yuan Li; Fang Li; Teresa I. Mitchell; Muralidhar R. Mallem; Yangsi Ou; Rohan Patel; Kim Vo; Hui Wang; Irina Burnina; Byung-Kwon Choi; Hans E. Huber; Terrance A. Stadheim; Dongxing Zha

Mammalian cell culture systems are used predominantly for the production of therapeutic monoclonal antibody (mAb) products. A number of alternative platforms, such as Pichia engineered with a humanized N-linked glycosylation pathway, have recently been developed for the production of mAbs. The glycosylation profiles of mAbs produced in glycoengineered Pichia are similar to those of mAbs produced in mammalian systems. This report presents for the first time the comprehensive characterization of an anti-human epidermal growth factor receptor 2 (HER2) mAb produced in a glycoengineered Pichia, and a study comparing the anti-HER2 from Pichia, which had an amino acid sequence identical to trastuzumab, with trastuzumab. The comparative study covered a full spectrum of preclinical evaluation, including bioanalytical characterization, in vitro biological functions, in vivo anti-tumor efficacy and pharmacokinetics in both mice and non-human primates. Cell signaling and proliferation assays showed that anti-HER2 from Pichia had antagonist activities comparable to trastuzumab. However, Pichia–produced material showed a 5-fold increase in binding affinity to FcγIIIA and significantly enhanced antibody dependant cell-mediated cytotoxicity (ADCC) activity, presumably due to the lack of fucose on N-glycans. In a breast cancer xenograft mouse model, anti-HER2 was comparable to trastuzumab in tumor growth inhibition. Furthermore, comparable pharmacokinetic profiles were observed for anti-HER2 and trastuzumab in both mice and cynomolgus monkeys. We conclude that glycoengineered Pichia provides an alternative production platform for therapeutic mAbs and may be of particular interest for production of antibodies for which ADCC is part of the clinical mechanism of action.


Biomaterials | 2014

Human decellularized adipose tissue scaffold as a model for breast cancer cell growth and drug treatments

Lina W. Dunne; Zhao Huang; Weixu Meng; Xuejun Fan; Ningyan Zhang; Qixu Zhang; Zhiqiang An

Human adipose tissue extracellular matrix, derived through decellularization processing, has been shown to provide a biomimetic microenvironment for adipose tissue regeneration. This study reports the use of human adipose tissue-derived extracellular matrix (hDAM) scaffolds as a three-dimensional cell culturing system for the investigation of breast cancer growth and drug treatments. The hDAM scaffolds have similar extracellular matrix composition to the microenvironment of breast tissues. Breast cancer cells were cultured in hDAM scaffolds, and cell proliferation, migration, morphology, and drug responses were investigated. The growth profiles of multiple breast cancer cell lines cultured in hDAM scaffolds differed from the growth of those cultured on two-dimensional surfaces and more closely resembled the growth of xenografts. hDAM-cultured breast cancer cells also differed from those cultured on two-dimensional surfaces in terms of cell morphology, migration, expression of adhesion molecules, and sensitivity to drug treatment. Our results demonstrated that the hDAM system provides breast cancer cells with a biomimetic microenvironment in vitro that more closely mimics the in vivo microenvironment than existing two-dimensional and Matrigel three-dimensional cultures do, and thus can provide vital information for the characterization of cancer cells and screening of cancer therapeutics.


Breast Cancer Research | 2012

A single proteolytic cleavage within the lower hinge of trastuzumab reduces immune effector function and in vivo efficacy

Xuejun Fan; Randall J. Brezski; Ming Fa; Hui Deng; Allison Oberholtzer; Anneliese Gonzalez; William P. Dubinsky; William R. Strohl; Robert E. Jordan; Ningyan Zhang; Zhiqiang An

IntroductionRecent studies reported that human IgG antibodies are susceptible to specific proteolytic cleavage in their lower hinge region, and the hinge cleavage results in a loss of Fc-mediated effector functions. Trastuzumab is a humanized IgG1 therapeutic monoclonal antibody for the treatment of HER2-overexpressing breast cancers, and its mechanisms of action consist of inhibition of HER2 signaling and Fc-mediated antibody-dependent cellular cytotoxicity (ADCC). The objective of this study is to investigate the potential effect of proteinase hinge cleavage on the efficacy of trastuzumab using both a breast cancer cell culture method and an in vivo mouse xenograft tumor model.MethodsTrastuzumab antibody was incubated with a panel of human matrix metalloproteinases, and proteolytic cleavage in the lower hinge region was detected using both western blotting and mass spectrometry. Single hinge cleaved trastuzumab (scIgG-T) was purified and evaluated for its ability to mediate ADCC and inhibition of breast cancer cell proliferation in vitro as well as anti-tumor efficacy in the mouse xenograft tumor model. Infiltrated immune cells were detected in tumor tissues by immunohistochemistry.ResultsscIgG-T retains HER2 antigen binding activity and inhibits HER2-mediated downstream signaling and cell proliferation in vitro when compared with the intact trastuzumab. However, scIgG-T lost Fc-mediated ADCC activity in vitro, and had significantly reduced anti-tumor efficacy in a mouse xenograft tumor model. Immunohistochemistry showed reduced immune cell infiltration in tumor tissues treated with scIgG-T when compared with those treated with the intact trastuzumab, which is consistent with the decreased ADCC mediated by scIgG-T in vitro.ConclusionTrastuzumab can be cleaved by matrix metalloproteinases within the lower hinge. scIgG-T exhibited a significantly reduced anti-tumor efficacy in vivo due to the weakened immune effector function such as ADCC. The results suggest that the lower hinge cleavage of trastuzumab can occur in the tumor microenvironment where matrix metalloproteinases often have high levels of expression and scIgG-T might compromise its anti-tumor efficacy in the clinic. However, further studies are needed to validate these hypotheses in the clinical setting.


Journal of Immunology | 2015

Trastuzumab Triggers Phagocytic Killing of High HER2 Cancer Cells In Vitro and In Vivo by Interaction with Fcγ Receptors on Macrophages

Yun Shi; Xuejun Fan; Hui Deng; Randall J. Brezski; Michael Rycyzyn; Robert E. Jordan; William R. Strohl; Quanming Zou; Ningyan Zhang; Zhiqiang An

Trastuzumab has been used for the treatment of HER2-overexpressing breast cancer for more than a decade, but the mechanisms of action for the therapy are still being actively investigated. Ab-dependent cell-mediated cytotoxicity mediated by NK cells is well recognized as one of the key mechanisms of action for trastuzumab, but trastuzumab-mediated Ab-dependent cellular phagocytosis (ADCP) has not been established. In this study, we demonstrate that macrophages, by way of phagocytic engulfment, can mediate ADCP and cancer cell killing in the presence of trastuzumab. Increased infiltration of macrophages in the tumor tissue was associated with enhanced efficacy of trastuzumab whereas depletion of macrophages resulted in reduced antitumor efficacy in mouse xenograft tumor models. Among the four mouse FcγRs, FcγRIV exhibits the strongest binding affinity to trastuzumab. Knockdown of FcγRIV in mouse macrophages reduced cancer cell killing and ADCP activity triggered by trastuzumab. Consistently, an upregulation of FcγRIV expression by IFN-γ triggered an increased ADCP activity by trastuzumab. In an analogous fashion, IFN-γ priming of human macrophages increased the expression of FcγRIII, the ortholog of murine FcγRIV, and increased trastuzumab-mediated cancer cell killing. Thus, in two independent systems, the results indicated that activation of macrophages in combination with trastuzumab can serve as a therapeutic strategy for treating high HER2 breast cancer by boosting ADCP killing of cancer cells.


Oncogene | 2015

The E3 ubiquitin ligase NEDD4 negatively regulates HER3/ErbB3 level and signaling.

Zhao Huang; Byung-Kwon Choi; Kalpana Mujoo; Xuejun Fan; M. Fa; S. Mukherjee; N. Owiti; Ningyan Zhang; Zhiqiang An

HER3/ErbB3, a member of the epidermal growth factor receptor (EGFR) family, has a pivotal role in cancer and is emerging as a therapeutic antibody target. In this study, we identified NEDD4 (neural precursor cell expressed, developmentally downregulated 4) as a novel interaction partner and ubiquitin E3 ligase of human HER3. Using molecular and biochemical approaches, we demonstrated that the C-terminal tail of HER3 interacted with the WW domains of NEDD4 and the interaction was independent of neuregulin-1. Short hairpin RNA knockdown of NEDD4 elevated HER3 levels and resulted in increased HER3 signaling and cancer cell proliferation in vitro and in vivo. A similar inverse relationship between HER3 and NEDD4 levels was observed in prostate cancer tumor tissues. More importantly, the upregulated HER3 expression by NEDD4 knockdown sensitized cancer cells for growth inhibition by an anti-HER3 antibody. Taken together, our results suggest that low NEDD4 levels may predict activation of HER3 signaling and efficacies of anti-HER3 antibody therapies.


Cancer Medicine | 2012

ERBB3 (HER3) is a key sensor in the regulation of ERBB‐mediated signaling in both low and high ERBB2 (HER2) expressing cancer cells

Byung-Kwon Choi; Xuejun Fan; Hui Deng; Ningyan Zhang; Zhiqiang An

Aberrant expression and activation of EGFR and ERBB2 (HER2) have been successfully targeted for cancer therapeutics. Recent evidence from both basic and clinical studies suggests that ERBB3 (HER3) serves as a key activator of downstream signaling through dimerization with other ERBB proteins and plays a critical role in the widespread clinical resistance to EGFR and HER2 targeting cancer therapies. As a result, HER3 is actively pursued as an antibody therapeutic target for cancer. Ligand binding is thought to be a prerequisite for dimerization of HER3 with other ERBB proteins, which results in phosphorylation of its c‐terminal tyrosine residues and activation of downstream AKT and MAPK signaling pathways. In this study, we report that an anti‐HER2 monoclonal antibody (HER2Mab), which blocks HER2 dimerization with HER3, induces HER3 dimerization with EGFR in both low and high HER2 expressing cancer cells. Treatment of the low HER2 expressing MCF7 cancer cells with HER2Mab promoted cell proliferation and migration in the absence of HER3 ligand stimulation. Follow‐up studies revealed that HER2Mab‐induced HER3 signaling via EGFR/HER3 dimerization and activation of downstream AKT signaling pathways. These results suggest that equilibrium of dimerization among the ERBB proteins can be perturbed by HER2Mab and HER3 plays a key role in sensing the perturbation.


Journal of Virology | 2017

Neutralization of Diverse Human Cytomegalovirus Strains Conferred by Antibodies Targeting Viral gH/gL/pUL128-131 Pentameric Complex

Sha Ha; Fengsheng Li; Matthew C. Troutman; Daniel C. Freed; Aimin Tang; John W. Loughney; Dai Wang; I-Ming Wang; Josef Vlasak; David Nickle; Richard R. Rustandi; Melissa Hamm; Pete DePhillips; Ningyan Zhang; Jason S. McLellan; Hua Zhu; Stuart P. Adler; Michael A. McVoy; Zhiqiang An; Tong-Ming Fu

ABSTRACT Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection, and developing a prophylactic vaccine is of high priority to public health. We recently reported a replication-defective human cytomegalovirus with restored pentameric complex glycoprotein H (gH)/gL/pUL128-131 for prevention of congenital HCMV infection. While the quantity of vaccine-induced antibody responses can be measured in a viral neutralization assay, assessing the quality of such responses, including the ability of vaccine-induced antibodies to cross-neutralize the field strains of HCMV, remains a challenge. In this study, with a panel of neutralizing antibodies from three healthy human donors with natural HCMV infection or a vaccinated animal, we mapped eight sites on the dominant virus-neutralizing antigen—the pentameric complex of glycoprotein H (gH), gL, and pUL128, pUL130, and pUL131. By evaluating the site-specific antibodies in vaccine immune sera, we demonstrated that vaccination elicited functional antiviral antibodies to multiple neutralizing sites in rhesus macaques, with quality attributes comparable to those of CMV hyperimmune globulin. Furthermore, these immune sera showed antiviral activities against a panel of genetically distinct HCMV clinical isolates. These results highlighted the importance of understanding the quality of vaccine-induced antibody responses, which includes not only the neutralizing potency in key cell types but also the ability to protect against the genetically diverse field strains. IMPORTANCE HCMV is the leading cause of congenital viral infection, and development of a preventive vaccine is a high public health priority. To understand the strain coverage of vaccine-induced immune responses in comparison with natural immunity, we used a panel of broadly neutralizing antibodies to identify the immunogenic sites of a dominant viral antigen—the pentameric complex. We further demonstrated that following vaccination of a replication-defective virus with the restored pentameric complex, rhesus macaques can develop broadly neutralizing antibodies targeting multiple immunogenic sites of the pentameric complex. Such analyses of site-specific antibody responses are imperative to our assessment of the quality of vaccine-induced immunity in clinical studies.


Neuron | 2018

TREM2 Is a Receptor for β-Amyloid that Mediates Microglial Function

Yingjun Zhao; Wu Xw; Xiaoguang Li; Lu Lin Jiang; Xun Gui; Yan Liu; Yu Sun; Bing Zhu; Juan C. Piña-Crespo; Muxian Zhang; Ningyan Zhang; Xiaochun Chen; Guojun Bu; Zhiqiang An; Timothy Y. Huang; Huaxi Xu

Mutations in triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to increased Alzheimers disease (AD) risk. Neurobiological functions of TREM2 and its pathophysiological ligands remain elusive. Here we found that TREM2 directly binds to β-amyloid (Aβ) oligomers with nanomolar affinity, whereas AD-associated TREM2 mutations reduce Aβ binding. TREM2 deficiency impairs Aβ degradation in primary microglial culture and mouse brain. Aβ-induced microglial depolarization, K+ inward current induction, cytokine expression and secretion, migration, proliferation, apoptosis, and morphological changes are dependent on TREM2. In addition, TREM2 interaction with its signaling adaptor DAP12 is enhanced by Aβ, regulating downstream phosphorylation of SYK and GSK3β. Our data demonstrate TREM2 as a microglial Aβ receptor transducing physiological and AD-related pathological effects associated with Aβ.


Acta Biochimica et Biophysica Sinica | 2015

HER3/ErbB3, an emerging cancer therapeutic target

Ningyan Zhang; Yujun Chang; Adan Rios; Zhiqiang An

HER3 is a member of the HER (EGFR/ErbB) receptor family consisting of four closely related type 1 transmembrane receptors (EGFR, HER2, HER3, and HER4). HER receptors are part of a complex signaling network intertwined with the Ras/Raf/MAPK, PI3K/AKT, JAK/STAT, and PKC signaling pathways. Aberrant activation of the HER receptors and downstream signaling molecules tips the balance on cellular events, leading to various types of cancers. Monoclonal antibodies (mAbs) and small molecule inhibitors targeting EGFR and HER2 tyrosine kinase activities exhibit clinical benefits in the treatment of several types of cancers, but their clinical efficacy is limited by the occurrence of drug resistance. HER3 is the preferred dimerization partner of HER2 and it is well established that HER3 plays an important role in drug resistance to EGFR- and HER2-targeting therapies. Since HER3 has limited kinase activity, mAbs are being explored to target HER3 for cancer therapy. Currently, approximately a dozen of anti-HER3 mAbs are at different stages of clinical development. However, the lack of established biomarkers has made it more challenging to stratify cancer patients to whom HER3-targeting therapies can be more effective. In this review, we focus on the validation of HER3 as a cancer drug target, the recent development in biomarker discovery for anti-HER3 therapies, and the progress made in the clinical development of HER3-targeting mAbs.

Collaboration


Dive into the Ningyan Zhang's collaboration.

Top Co-Authors

Avatar

Zhiqiang An

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Xuejun Fan

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Hui Deng

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Xun Gui

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Weixu Meng

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Zhao Huang

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kalpana Mujoo

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge