Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nir Barzilai is active.

Publication


Featured researches published by Nir Barzilai.


Nature | 1998

A nutrient-sensing pathway regulates leptin gene expression in muscle and fat

Jiali Wang; Rong Liu; Meredith Hawkins; Nir Barzilai; Luciano Rossetti

Leptin, the protein encoded by the obese (ob) gene, is synthesized and released in response to increased energy storage in adipose tissue. However, it is still not known how incoming energy is sensed and transduced into increased expression of the ob gene. The hexosamine biosynthetic pathway is a cellular ‘sensor’ of energy availability and mediates the effects of glucose on the expression of several gene products. Here we provide evidence for rapid activation of ob gene expression in skeletal muscle by glucosamine. Increased tissue concentrations of the end product of the hexosamine biosynthetic pathway, UDP-N-acetylglucosamine (UDP-GlcNAc), result in rapid and marked increases in leptin messenger RNA and protein levels (although these levels were much lower than those in fat). Plasma leptin levels and leptin mRNA and protein levels in adipose tissue also increase. Most important, stimulation of leptin synthesis is reproduced by either hyperglycaemia or hyperlipidaemia, which also increase tissue levels of UDP-N-acetylglucosamine in conscious rodents. Finally, incubation of 3T3-L1 pre-adipocytes and L6 myocytes with glucosamine rapidly induces ob gene expression. Our findings are the first evidence of inducible leptin expression in skeletal muscle and unveil an important biochemical link between increased availability of nutrients and leptin expression.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Functionally significant insulin-like growth factor I receptor mutations in centenarians.

Yousin Suh; Gil Atzmon; Mi Ook Cho; David Hwang; Bingrong Liu; Daniel J. Leahy; Nir Barzilai; Pinchas Cohen

Rather than being a passive, haphazard process of wear and tear, lifespan can be modulated actively by components of the insulin/insulin-like growth factor I (IGFI) pathway in laboratory animals. Complete or partial loss-of-function mutations in genes encoding components of the insulin/IGFI pathway result in extension of life span in yeasts, worms, flies, and mice. This remarkable conservation throughout evolution suggests that altered signaling in this pathway may also influence human lifespan. On the other hand, evolutionary tradeoffs predict that the laboratory findings may not be relevant to human populations, because of the high fitness cost during early life. Here, we studied the biochemical, phenotypic, and genetic variations in a cohort of Ashkenazi Jewish centenarians, their offspring, and offspring-matched controls and demonstrated a gender-specific increase in serum IGFI associated with a smaller stature in female offspring of centenarians. Sequence analysis of the IGF1 and IGF1 receptor (IGF1R) genes of female centenarians showed overrepresentation of heterozygous mutations in the IGF1R gene among centenarians relative to controls that are associated with high serum IGFI levels and reduced activity of the IGFIR as measured in transformed lymphocytes. Thus, genetic alterations in the human IGF1R that result in altered IGF signaling pathway confer an increase in susceptibility to human longevity, suggesting a role of this pathway in modulation of human lifespan.


Journal of Clinical Investigation | 1997

Leptin selectively decreases visceral adiposity and enhances insulin action.

Nir Barzilai; Jiali Wang; Duna Massilon; Patricia Vuguin; Meredith Hawkins; Luciano Rossetti

Intraabdominal adiposity and insulin resistance are risk factors for diabetes mellitus, dyslipidemia, arteriosclerosis, and mortality. Leptin, a fat-derived protein encoded by the ob gene, has been postulated to be a sensor of energy storage in adipose tissue capable of mediating a feedback signal to sites involved in the regulation of energy homeostasis. Here, we provide evidence for specific effects of leptin on fat distribution and in vivo insulin action. Leptin (LEP) or vehicle (CON) was administered by osmotic minipumps for 8 d to pair-fed adult rats. During the 8 d of the study, body weight and total fat mass decreased similarly in LEP and in CON. However, while moderate calorie restriction (CON) resulted in similar decreases in whole body (by 20%) and visceral (by 21%) fat, leptin administration led to a specific and marked decrease (by 62%) in visceral adiposity. During physiologic hyperinsulinemia (insulin clamp), leptin markedly enhanced insulin action on both inhibition of hepatic glucose production and stimulation of glucose uptake. Finally, leptin exerted complex effects on the hepatic gene expression of key metabolic enzymes and on the intrahepatic partitioning of metabolic fluxes, which are likely to represent a defense against excessive storage of energy in adipose depots. These studies demonstrate novel actions of circulating leptin in the regulation of fat distribution, insulin action, and hepatic gene expression and suggest that it may play a role in the pathophysiology of abdominal obesity and insulin resistance.


Diabetes Care | 2009

Statin Therapy and Risk of Developing Type 2 Diabetes: A Meta-Analysis

Swapnil Rajpathak; Dharam J. Kumbhani; Jill P. Crandall; Nir Barzilai; Michael H. Alderman; Paul M. Ridker

OBJECTIVE Although statin therapy reduces cardiovascular risk, its relationship with the development of diabetes is controversial. The first study (West of Scotland Coronary Prevention Study [WOSCOPS]) that evaluated this association reported a small protective effect but used nonstandardized criteria for diabetes diagnosis. However, results from subsequent hypothesis-testing trials have been inconsistent. The aim of this meta-analysis is to evaluate the possible effect of statin therapy on incident diabetes. RESEARCH DESIGN AND METHODS A systematic literature search for randomized statin trials that reported data on diabetes through February 2009 was conducted using specific search terms. In addition to the hypothesis-generating data from WOSCOPS, hypothesis-testing data were available from the Heart Protection Study (HPS), the Long-Term Intervention with Pravastatin in Ischemic Disease (LIPID) Study, the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT), the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER), and the Controlled Rosuvastatin Multinational Study in Heart Failure (CORONA), together including 57,593 patients with mean follow-up of 3.9 years during which 2,082 incident diabetes cases accrued. Weighted averages were reported as risk ratios (RRs) with 95% CIs using a random-effects model. Statistical heterogeneity scores were assessed with the Q and I2 statistic. RESULTS In the meta-analysis of the hypothesis-testing trials, we observed a small increase in diabetes risk (RR 1.13 [95% CI 1.03–1.23]) with no evidence of heterogeneity across trials. However, this estimate was attenuated and no longer significant when the hypothesis-generating trial WOSCOPS was included (1.06 [0.93–1.25]) and also resulted in significant heterogeneity (Q 11.8 [5 d.f.], P = 0.03, I2 = 57.7%). CONCLUSIONS Although statin therapy greatly lowers vascular risk, including among those with and at risk for diabetes, the relationship of statin therapy to incident diabetes remains uncertain. Future statin trials should be designed to formally address this issue.


Journal of Biological Chemistry | 1997

SHORT TERM EFFECTS OF LEPTIN ON HEPATIC GLUCONEOGENESIS AND IN VIVO INSULIN ACTION

Luciano Rossetti; Duna Massillon; Nir Barzilai; Patricia Vuguin; Wei Chen; Meredith Hawkins; Jie Wu; Jali Wang

Long term administration of leptin decreases caloric intake and fat mass and improves glucose tolerance. Here we examine whether leptin acutely regulates peripheral and hepatic insulin action. Recombinant mouse leptin (0.3 mg/kg·h, Leptin +) or vehicle (Leptin −) were administered for 6 h to 4-month-old rats (n = 20), and insulin (3 milliunits/kg·min) clamp studies were performed. During physiologic hyperinsulinemia (plasma insulin ∼65 microunits/ml), the rates of whole body glucose uptake, glycolysis, and glycogen synthesis and the rates of 2-deoxyglucose uptake in individual tissues were similar inLeptin − and Leptin +. Post-absorptive hepatic glucose production (HGP) was similar in the two groups. However, leptin enhanced insulin’s inhibition of HGP (4.1 ± 0.7 and 6.2 ± 0.7 mg/kg·min; p < 0.05). The decreased HGP in theLeptin + group was due to a marked suppression of hepatic glycogenolysis (0.7 ± 0.1 versus 4.1 ± 0.6 mg/kg·min, in Leptin + versus Leptin −, respectively;p < 0.001), whereas the % contribution of gluconeogenesis to HGP was markedly increased (82 ± 3%versus 36 ± 4% in Leptin + andLeptin −, respectively; p < 0.001). At the end of the 6-h leptin infusion, the hepatic abundance of glucokinase mRNA was decreased, whereas that of phosphoenolpyruvate carboxykinase mRNA was increased compared with Leptin −. We conclude that an acute increase in plasma leptin 1) enhances insulin’s ability to inhibit HGP, 2) does not affect peripheral insulin action, and 3) induces a redistribution of intrahepatic glucose fluxes and changes in the gene expression of hepatic enzymes that closely resemble those of fasting.


Diabetes | 2012

The Critical Role of Metabolic Pathways in Aging

Nir Barzilai; Derek M. Huffman; Radhika Muzumdar; Andrzej Bartke

Aging is characterized by a deterioration in the maintenance of homeostatic processes over time, leading to functional decline and increased risk for disease and death. The aging process is characterized metabolically by insulin resistance, changes in body composition, and physiological declines in growth hormone (GH), insulin-like growth factor-1 (IGF-1), and sex steroids. Some interventions designed to address features of aging, such as caloric restriction or visceral fat depletion, have succeeded in improving insulin action and life span in rodents. Meanwhile, pharmacologic interventions and hormonal perturbations have increased the life span of several mammalian species without necessarily addressing features of age-related metabolic decline. These interventions include inhibition of the mammalian target of rapamycin and lifetime deficiency in GH/IGF-1 signaling. However, strategies to treat aging in humans, such as hormone replacement, have mostly failed to achieve their desired response. We will briefly discuss recent advances in our understanding of the complex role of metabolic pathways in the aging process and highlight important paradoxes that have emerged from these discoveries. Although life span has been the major outcome of interest in the laboratory, a special focus is made in this study on healthspan, as improved quality of life is the goal when translated to humans.


Journal of Clinical Investigation | 1997

Role of the glucosamine pathway in fat-induced insulin resistance.

Meredith Hawkins; Nir Barzilai; Rong Liu; Meizhu Hu; Wei Chen; Luciano Rossetti

To examine whether the hexosamine biosynthetic pathway might play a role in fat-induced insulin resistance, we monitored the effects of prolonged elevations in FFA availability both on skeletal muscle levels of UDP-N-acetyl-hexosamines and on peripheral glucose disposal during 7-h euglycemic-hyperinsulinemic (approximately 500 microU/ml) clamp studies. When the insulin-induced decrease in the plasma FFA levels (to approximately 0.3 mM) was prevented by infusion of a lipid emulsion in 15 conscious rats (plasma FFA approximately 1.4 mM), glucose uptake (5-7 h = 32.5+/-1.7 vs 0-2 h = 45.2+/-2.8 mg/kg per min; P < 0.01) and glycogen synthesis (P < 0.01) were markedly decreased. During lipid infusion, muscle UDP-N-acetyl-glucosamine (UDP-GlcNAc) increased by twofold (to 53.4+/-1.1 at 3 h and to 55.5+/-1.1 nmol/gram at 7 h vs 20.4+/-1.7 at 0 h, P < 0.01) while glucose-6-phosphate (Glc-6-P) levels were increased at 3 h (475+/-49 nmol/gram) and decreased at 7 h (133+/-7 vs 337+/-28 nmol/gram at 0 h, P < 0.01). To discern whether such an increase in the skeletal muscle UDP-GlcNAc concentration could account for the development of insulin resistance, we generated similar increases in muscle UDP-GlcNAc using three alternate experimental approaches. Euglycemic clamps were performed after prolonged hyperglycemia (18 mM, n = 10), or increased availability of either glucosamine (3 micromol/kg per min; n = 10) or uridine (30 micromol/kg per min; n = 4). These conditions all resulted in very similar increases in the skeletal muscle UDP-GlcNAc (to approximately 55 nmol/gram) and markedly impaired glucose uptake and glycogen synthesis. Thus, fat-induced insulin resistance is associated with: (a) decreased skeletal muscle Glc-6-P levels indicating defective transport/phosphorylation of glucose; (b) marked accumulation of the endproducts of the hexosamine biosynthetic pathway preceding the onset of insulin resistance. Most important, the same degree of insulin resistance can be reproduced in the absence of increased FFA availability by a similar increase in skeletal muscle UDP-N-acetyl-hexosamines. In conclusion, our results support the hypothesis that increased FFA availability induces skeletal muscle insulin resistance by increasing the flux of fructose-6-phosphate into the hexosamine pathway.


Aging Cell | 2009

Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity.

Ludmila Pawlikowska; Donglei Hu; Scott Huntsman; Andrew Sung; Catherine Chu; Justin Chen; Alexander H. Joyner; Nicholas J. Schork; Wen Chi Hsueh; Alex P. Reiner; Bruce M. Psaty; Gil Atzmon; Nir Barzilai; Steven R. Cummings; Warren S. Browner; Pui-Yan Kwok; Elad Ziv

The insulin/IGF1 signaling pathways affect lifespan in several model organisms, including worms, flies and mice. To investigate whether common genetic variation in this pathway influences lifespan in humans, we genotyped 291 common variants in 30 genes encoding proteins in the insulin/IGF1 signaling pathway in a cohort of elderly Caucasian women selected from the Study of Osteoporotic Fractures (SOF). The cohort included 293 long‐lived cases (lifespan ≥ 92 years (y), mean ± standard deviation (SD) = 95.3 ± 2.2y) and 603 average‐lifespan controls (lifespan ≤ 79y, mean = 75.7 ± 2.6y). Variants were selected for genotyping using a haplotype‐tagging approach. We found a modest excess of variants nominally associated with longevity. Nominally significant variants were then replicated in two additional Caucasian cohorts including both males and females: the Cardiovascular Health Study and Ashkenazi Jewish Centenarians. An intronic single nucleotide polymorphism in AKT1, rs3803304, was significantly associated with lifespan in a meta‐analysis across the three cohorts (OR = 0.78 95%CI = 0.68–0.89, adjusted P = 0.043); two intronic single nucleotide polymorphisms in FOXO3A demonstrated a significant lifespan association among women only (rs1935949, OR = 1.35, 95%CI = 1.15–1.57, adjusted P = 0.0093). These results demonstrate that common variants in several genes in the insulin/IGF1 pathway are associated with human lifespan.


Circulation Research | 2005

Association Between a Functional Variant of the KLOTHO Gene and High-Density Lipoprotein Cholesterol, Blood Pressure, Stroke, and Longevity

Dan E. Arking; Gil Atzmon; Albert Arking; Nir Barzilai; Harry C. Dietz

We previously identified a functional variant of KLOTHO, termed KL-VS, that is associated with human aging and early-onset occult coronary artery disease. Here, we determine whether the KL-VS allele influences cardiovascular disease risk factors, cardiovascular events, and ultimately, mortality. A total of 525 Ashkenazi Jews composed of 216 probands (age ≥95 years) and 309 unrelated individuals (ages 51 to 94) were genotyped for the KL-VS allele. In concordance with our previous data in Czech individuals (age ≥79; P<0.01), a heterozygous advantage for longevity was observed for individuals ≥79 years of age (P<0.004). Combined analysis indicates a 1.57-fold (95% CI, 1.23 to 1.98) increased odds ratio (OR) for 5-year survival in two independent populations (P<0.0002). Cardiovascular disease risk factors were assessed through multivariate regression analysis, demonstrating that high-density lipoprotein cholesterol (HDL-C; P<0.05) and systolic blood pressure (SBP; P<0.008) are associated with KL-VS genotype. History of vascular events was analyzed using logistic regression, indicating that after adjustment for traditional risk factors, heterozygous individuals were at significantly lower risk for stroke than wild-type individuals (OR, 5.88; 95% CI, 1.18 to 29.41), whereas homozygous KL-VS individuals had the highest risk (OR, 30.65; 95% CI, 2.55 to 368.00). Similarly, prospective analysis of mortality in probands using Cox regression indicates that wild-type individuals have a 2.15-fold (95% CI, 1.18 to 3.91) and homozygous KL-VS individuals a 4.49-fold (95% CI, 1.35 to 14.97) increase in relative risk for mortality after adjusting for potential confounders. Thus, cross-sectional and prospective studies confirm a genetic model in which the KL-VS allele confers a heterozygous advantage in conjunction with a marked homozygous disadvantage for HDL-C levels, SBP, stroke, and longevity.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2012

Pilot Study of Resveratrol in Older Adults With Impaired Glucose Tolerance

Jill P. Crandall; Valerie Oram; Georgeta Trandafirescu; Migdalia Reid; Preeti Kishore; Meredith Hawkins; Hillel W. Cohen; Nir Barzilai

BACKGROUND Resveratrol, a plant-derived polyphenol, has shown promising effects on insulin sensitivity and glucose tolerance in animal models and is also reported to have cardioprotective properties, but human studies are limited. In a pilot study, we tested the hypothesis that resveratrol improves glucose metabolism and vascular function in older adults with impaired glucose tolerance (IGT). METHODS Ten subjects aged 72 ± 3 years (M ± SD) with IGT were enrolled in a 4-week open-label study of resveratrol (daily dose 1, 1.5, or 2 g). Following a standard mixed meal (110 g carbohydrate, 20 g protein, 20 g fat), we measured 3-hour glucose and insulin area under the curve (AUC), insulin sensitivity (Matsuda index), and secretion (corrected insulin response at 30 minutes). Endothelial function was assessed by reactive hyperemia peripheral arterial tonometry (reactive hyperemia index) before and 90 minutes postmeal. Results did not differ by dose, so data were combined for analysis. RESULTS At baseline, body mass index was 29 ± 5 kg/m(2), fasting plasma glucose 110 ± 13 mg/dL, and 2-hour glucose 183 ± 33 mg/dL. After 4 weeks of resveratrol, fasting plasma glucose was unchanged, but peak postmeal (185 ± 10 vs 166 ± 9 mg/dL, p = .003) and 3-hour glucose AUC (469 ± 23 vs 428 ± 19, p = .001) declined. Matsuda index improved (3.1 ± 0.5 vs 3.8 ± 0.5, p = .03), and corrected insulin response at 30 minutes was unchanged (0.6 ± 0.1 vs 0.5 ± 0.5, p = .49). There was a trend toward improved postmeal reactive hyperemia index (baseline vs resveratrol postmeal delta -0.4 ± 0.2 vs 0.2 ± 0.3, p = .06). Weight, blood pressure, and lipids were unchanged. CONCLUSIONS At doses between 1 and 2 g/day, resveratrol improves insulin sensitivity and postmeal plasma glucose in subjects with IGT. These preliminary findings support the conduct of larger studies to further investigate the effects of resveratrol on metabolism and vascular function.

Collaboration


Dive into the Nir Barzilai's collaboration.

Top Co-Authors

Avatar

Gil Atzmon

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Luciano Rossetti

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek M. Huffman

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Francine Einstein

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jill P. Crandall

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Meredith Hawkins

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sofiya Milman

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pinchas Cohen

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge