Nir Horvitz
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nir Horvitz.
Ecology Letters | 2011
Ran Nathan; Nir Horvitz; Yanping He; Anna Kuparinen; Frank M. Schurr; Gabriel G. Katul
Despite ample research, understanding plant spread and predicting their ability to track projected climate changes remain a formidable challenge to be confronted. We modelled the spread of North American wind-dispersed trees in current and future (c. 2060) conditions, accounting for variation in 10 key dispersal, demographic and environmental factors affecting population spread. Predicted spread rates vary substantially among 12 study species, primarily due to inter-specific variation in maturation age, fecundity and seed terminal velocity. Future spread is predicted to be faster if atmospheric CO(2) enrichment would increase fecundity and advance maturation, irrespective of the projected changes in mean surface windspeed. Yet, for only a few species, predicted wind-driven spread will match future climate changes, conditioned on seed abscission occurring only in strong winds and environmental conditions favouring high survival of the farthest-dispersed seeds. Because such conditions are unlikely, North American wind-dispersed trees are expected to lag behind the projected climate range shift.
Proceedings of the National Academy of Sciences of the United States of America | 2008
S. Joseph Wright; Ana Trakhtenbrot; Gil Bohrer; Matteo Detto; Gabriel G. Katul; Nir Horvitz; Helene C. Muller-Landau; Frank A. Jones; Ran Nathan
Traits associated with seed dispersal vary tremendously among sympatric wind-dispersed plants. We used two contrasting tropical tree species, seed traps, micrometeorology, and a mechanistic model to evaluate how variation in four key traits affects seed dispersal by wind. The conceptual framework of movement ecology, wherein external factors (wind) interact with internal factors (plant traits) that enable movement and determine when and where movement occurs, fully captures the variable inputs and outputs of wind dispersal models and informs their interpretation. We used model calculations to evaluate the spatial pattern of dispersed seeds for the 16 factorial combinations of four traits. The study species differed dramatically in traits related to the timing of seed release, and a strong species by season interaction affected most aspects of the spatial pattern of dispersed seeds. A rich interplay among plant traits and seasonal differences in atmospheric conditions caused this interaction. Several of the same plant traits are crucial for both seed dispersal and other aspects of life history variation. Observed traits that limit dispersal are likely to be constrained by their life history consequences.
Proceedings of the Royal Society of London B: Biological Sciences | 2011
Nir Sapir; Nir Horvitz; Martin Wikelski; Roni Avissar; Yitzhak Mahrer; Ran Nathan
Aerial migrants commonly face atmospheric dynamics that may affect their movement and behaviour. Specifically, bird flight mode has been suggested to depend on convective updraught availability and tailwind assistance. However, this has not been tested thus far since both bird tracks and meteorological conditions are difficult to measure in detail throughout extended migratory flyways. Here, we applied, to our knowledge, the first comprehensive numerical atmospheric simulations by mean of the Regional Atmospheric Modeling System (RAMS) to study how meteorological processes affect the flight behaviour of migrating birds. We followed European bee-eaters (Merops apiaster) over southern Israel using radio telemetry and contrasted bird flight mode (flapping, soaring–gliding or mixed flight) against explanatory meteorological variables estimated by RAMS simulations at a spatial grid resolution of 250 × 250 m2. We found that temperature and especially turbulence kinetic energy (TKE) determine bee-eater flight mode, whereas, unexpectedly, no effect of tailwind assistance was found. TKE during soaring–gliding was significantly higher and distinct from TKE during flapping. We propose that applying detailed atmospheric simulations over extended migratory flyways can elucidate the highly dynamic behaviour of air-borne organisms, help predict the abundance and distribution of migrating birds, and aid in mitigating hazardous implications of bird migration.
Science | 2016
Gao Hu; Ka S. Lim; Nir Horvitz; S. J. Clark; Don R. Reynolds; Nir Sapir; Jason W. Chapman
Mass movement of “invisibles” We know a lot about vertebrate migrations globally. However, the majority of animals that live on this planet are invertebrates, and we know very little about their movements. Hu et al. monitored the migration of large and small insects over the southern United Kingdom for a decade. They found that more than a trillion insects move across this region annually. The movement of such a large biomass has considerable impacts on the ecosystems between which the insects migrate. Science, this issue p. 1584 Long-term measurements above the United Kingdom reveal that trillions of insects migrate above our heads annually. Migrating animals have an impact on ecosystems directly via influxes of predators, prey, and competitors and indirectly by vectoring nutrients, energy, and pathogens. Although linkages between vertebrate movements and ecosystem processes have been established, the effects of mass insect “bioflows” have not been described. We quantified biomass flux over the southern United Kingdom for high-flying (>150 meters) insects and show that ~3.5 trillion insects (3200 tons of biomass) migrate above the region annually. These flows are not randomly directed in insects larger than 10 milligrams, which exploit seasonally beneficial tailwinds. Large seasonal differences in the southward versus northward transfer of biomass occur in some years, although flows were balanced over the 10-year period. Our long-term study reveals a major transport process with implications for ecosystem services, processes, and biogeochemistry.
Scientific Reports | 2016
Roi Harel; Nir Horvitz; Ran Nathan
Due to the potentially detrimental consequences of low performance in basic functional tasks, individuals are expected to improve performance with age and show the most marked changes during early stages of life. Soaring-gliding birds use rising-air columns (thermals) to reduce energy expenditure allocated to flight. We offer a framework to evaluate thermal soaring performance, and use GPS-tracking to study movements of Eurasian griffon vultures (Gyps fulvus). Because the location and intensity of thermals are variable, we hypothesized that soaring performance would improve with experience and predicted that the performance of inexperienced individuals (<2 months) would be inferior to that of experienced ones (>5 years). No differences were found in body characteristics, climb rates under low wind shear, and thermal selection, presumably due to vultures’ tendency to forage in mixed-age groups. Adults, however, outperformed juveniles in their ability to adjust fine-scale movements under challenging conditions, as juveniles had lower climb rates under intermediate wind shear, particularly on the lee-side of thermal columns. Juveniles were also less efficient along the route both in terms of time and energy. The consequences of these handicaps are probably exacerbated if juveniles lag behind adults in finding and approaching food.
Ecology Letters | 2014
Nir Horvitz; Nir Sapir; Felix Liechti; Roni Avissar; Isaac Mahrer; Ran Nathan
Aerodynamic theory postulates that gliding airspeed, a major flight performance component for soaring avian migrants, scales with bird size and wing morphology. We tested this prediction, and the role of gliding altitude and soaring conditions, using atmospheric simulations and radar tracks of 1346 birds from 12 species. Gliding airspeed did not scale with bird size and wing morphology, and unexpectedly converged to a narrow range. To explain this discrepancy, we propose that soaring-gliding birds adjust their gliding airspeed according to the risk of grounding or switching to costly flapping flight. Introducing the Risk Aversion Flight Index (RAFI, the ratio of actual to theoretical risk-averse gliding airspeed), we found that inter- and intraspecific variation in RAFI positively correlated with wing loading, and negatively correlated with convective thermal conditions and gliding altitude, respectively. We propose that risk-sensitive behaviour modulates the evolution (morphology) and ecology (response to environmental conditions) of bird soaring flight.
Proceedings of the Royal Society of London, Series B : Biological Sciences | 2014
Nir Sapir; Nir Horvitz; Dina K. N. Dechmann; Jakob Fahr; Martin Wikelski
When animals move, their tracks may be strongly influenced by the motion of air or water, and this may affect the speed, energetics and prospects of the journey. Flying organisms, such as bats, may thus benefit from modifying their flight in response to the wind vector. Yet, practical difficulties have so far limited the understanding of this response for free-ranging bats. We tracked nine straw-coloured fruit bats (Eidolon helvum) that flew 42.5 ± 17.5 km (mean ± s.d.) to and from their roost near Accra, Ghana. Following detailed atmospheric simulations, we found that bats compensated for wind drift, as predicted under constant winds, and decreased their airspeed in response to tailwind assistance such that their groundspeed remained nearly constant. In addition, bats increased their airspeed with increasing crosswind speed. Overall, bats modulated their airspeed in relation to wind speed at different wind directions in a manner predicted by a two-dimensional optimal movement model. We conclude that sophisticated behavioural mechanisms to minimize the cost of transport under various wind conditions have evolved in bats. The bats’ response to the wind is similar to that reported for migratory birds and insects, suggesting convergent evolution of flight behaviours in volant organisms.
Philosophical Transactions of the Royal Society B | 2016
Roi Harel; Olivier Duriez; Orr Spiegel; Julie Fluhr; Nir Horvitz; Wayne M. Getz; Willem Bouten; François Sarrazin; Ohad Hatzofe; Ran Nathan
Natural selection theory suggests that mobile animals trade off time, energy and risk costs with food, safety and other pay-offs obtained by movement. We examined how birds make movement decisions by integrating aspects of flight biomechanics, movement ecology and behaviour in a hierarchical framework investigating flight track variation across several spatio-temporal scales. Using extensive global positioning system and accelerometer data from Eurasian griffon vultures (Gyps fulvus) in Israel and France, we examined soaring–gliding decision-making by comparing inbound versus outbound flights (to or from a central roost, respectively), and these (and other) home-range foraging movements (up to 300 km) versus long-range movements (longer than 300 km). We found that long-range movements and inbound flights have similar features compared with their counterparts: individuals reduced journey time by performing more efficient soaring–gliding flight, reduced energy expenditure by flapping less and were more risk-prone by gliding more steeply between thermals. Age, breeding status, wind conditions and flight altitude (but not sex) affected time and energy prioritization during flights. We therefore suggest that individuals facing time, energy and risk trade-offs during movements make similar decisions across a broad range of ecological contexts and spatial scales, presumably owing to similarity in the uncertainty about movement outcomes. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’.
The American Naturalist | 2008
Tal Avgar; Nir Horvitz; Luba Broitman; Ran Nathan
Using an individual‐based model, Scharf and coworkers showed that ambush predators may encounter prey more frequently than active predators. We show that this surprising result emerges because active predators were oblivious to prey during movement, an assumption that refutes the common conception about active foraging and lessens the key difference between these foraging modes. A revised model confirms that active predators always encounter prey more frequently, unequivocally supporting the authors’ conclusion that the advantage of active predators diminishes as prey moves faster or more directionally. We suggest that movement‐dependent perception quality can determine the relative efficiency of these two foraging modes.
Water Resources Research | 2014
Nir Horvitz; Rui Wang; Min Zhu; Fang‐Hao Wan; Ran Nathan
A constantly increasing number of alien species invade novel environments and cause enormous damage to both biodiversity and economics worldwide. This global problem is calling for better understanding of the different mechanisms driving invasive spread, hence quantification of a range of dispersal vectors. Yet, methods for elucidating the mechanisms underlying large-scale invasive spread from empirical patterns have not yet been developed. Here we propose a new computationally efficient method to quantify the contribution of different dispersal vectors to the spread rate of invasive plants. Using data collected over 30 years regarding the invasive species Ageratina adenophora since its detection at the Sichuan province, we explored its spread by wind and animals, rivers, and roads into 153 subcounties in the Sichuan, Chongqingshi, and Hubei provinces of China. We found that rivers are the most plausible vector for the rapid invasion of this species in the study area. Model explorations revealed robustness to changes in key assumptions and configuration. Future predictions of this ongoing invasion process project that the species will quickly spread along the Yangtze River and colonize large areas within a few years. Further model developments would provide a much needed tool to mechanistically and realistically describe large-scale invasive spread, providing insights into the underlying mechanisms and an ability to predict future spatial invasive dynamics.