Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nir Waiskopf is active.

Publication


Featured researches published by Nir Waiskopf.


Small | 2015

Effect of Surface Coating on the Photocatalytic Function of Hybrid CdS–Au Nanorods

Yuval Ben-Shahar; Francesco Scotognella; Nir Waiskopf; Ilka Kriegel; Stefano Dal Conte; Giulio Cerullo; Uri Banin

Hybrid semiconductor-metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au-tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L-glutathione and poly(styrene-co-maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI-coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady-state emission and time-resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts.


Nano Letters | 2014

Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas.

Lilach Bareket; Nir Waiskopf; David M. Rand; Gur Lubin; Moshe David-Pur; Jacob Ben-Dov; Soumyendu Roy; Cyril G. Eleftheriou; Evelyne Sernagor; Ori Cheshnovsky; Uri Banin; Yael Hanein

We report the development of a semiconductor nanorod-carbon nanotube based platform for wire-free, light induced retina stimulation. A plasma polymerized acrylic acid midlayer was used to achieve covalent conjugation of semiconductor nanorods directly onto neuro-adhesive, three-dimensional carbon nanotube surfaces. Photocurrent, photovoltage, and fluorescence lifetime measurements validate efficient charge transfer between the nanorods and the carbon nanotube films. Successful stimulation of a light-insensitive chick retina suggests the potential use of this novel platform in future artificial retina applications.


Nano Letters | 2016

Photocatalytic Reactive Oxygen Species Formation by Semiconductor–Metal Hybrid Nanoparticles. Toward Light-Induced Modulation of Biological Processes

Nir Waiskopf; Yuval Ben-Shahar; Michael Galchenko; Inbal Carmel; Gilli Moshitzky; Hermona Soreq; Uri Banin

Semiconductor-metal hybrid nanoparticles manifest efficient light-induced spatial charge separation at the semiconductor-metal interface, as demonstrated by their use for hydrogen generation via water splitting. Here, we pioneer a study of their functionality as efficient photocatalysts for the formation of reactive oxygen species. We observed enhanced photocatalytic activity forming hydrogen peroxide, superoxide, and hydroxyl radicals upon light excitation, which was significantly larger than that of the semiconductor nanocrystals, attributed to the charge separation and the catalytic function of the metal tip. We used this photocatalytic functionality for modulating the enzymatic activity of horseradish peroxidase as a model system, demonstrating the potential use of hybrid nanoparticles as active agents for controlling biological processes through illumination. The capability to produce reactive oxygen species by illumination on-demand enhances the available peroxidase-based tools for research and opens the path for studying biological processes at high spatiotemporal resolution, laying the foundation for developing novel therapeutic approaches.


Molecular Medicine | 2014

Decline in serum cholinesterase activities predicts 2-year major adverse cardiac events.

Yaron Arbel; Shani Shenhar-Tsarfaty; Nir Waiskopf; Ariel Finkelstein; Amir Halkin; Miri Revivo; Shlomo Berliner; Itzhak Herz; Itzhak Shapira; Gad Keren; Hermona Soreq; Shmuel Banai

Parasympathetic activity influences long-term outcome in patients with cardiovascular disease, but the underlying mechanism(s) linking parasympathetic activity and the occurrence of major adverse cardiovascular events (MACEs) are incompletely understood. The aim of this pilot study was to evaluate the association between serum cholinesterase activities as parasympathetic biomarkers and the risk for the occurrence of MACEs. Cholinergic status was determined by measuring the cumulative capacity of serum acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) to hydrolyze the AChE substrate acetylthiocholine. Cholinergic status was evaluated in randomly selected patients undergoing cardiac catheterization. The patients were divided into two groups of 100 patients in each group, with or without occurrence of MACEs during a follow-up period of 40 months. Cox regression models adjusted for potential clinical, metabolic and inflammatory confounders served to evaluate association with clinical outcome. We found that patients with MACE presented lower cholinergic status and AChE values at catheterization (1,127 ± 422 and 359 ± 153 nmol substrate hydrolyzed per minute per milliliter, respectively) than no-MACE patients (1,760 ± 546 and 508 ± 183 nmol substrate hydrolyzed per minute per milliliter, p < 0.001 and p < 0.001, respectively), whose levels were comparable to those of matched healthy controls (1,622 ± 303 and 504 ± 126 nmol substrate hydrolyzed per minute per milliliter, respectively). In a multivariate analysis, patients with AChE or total cholinergic status values below median showed conspicuously elevated risk for MACE (hazard ratio 1.85 (95% confidence interval (CI) 1.09–3.15, p = 0.02) and 2.21 (95% CI 1.22–4.00, p = 0.009)) compared with those above median, even after adjusting for potential confounders. We conclude that parasympathetic dysfunction expressed as reduced serum AChE and AChE activities in patients compared to healthy controls can together reflect impaired parasympathetic activity. This impairment predicts the risk of MACE up to 40 months in such patients. Monitoring these parasympathetic parameters might help in the risk stratification of patients with cardiovascular disease.


Journal of Molecular Neuroscience | 2014

AChE and RACK1 promote the anti-inflammatory properties of fluoxetine.

Nir Waiskopf; Keren Ofek; Adi Gilboa-Geffen; Uriya Bekenstein; Assaf Bahat; Estelle R. Bennett; Erez Podoly; Oded Livnah; Gunther Hartmann; Hermona Soreq

Selective serotonin reuptake inhibitors (SSRIs) show anti-inflammatory effects, suggesting a possible interaction with both Toll-like-receptor 4 (TLR4) responses and cholinergic signaling through as yet unclear molecular mechanism(s). Our results of structural modeling support the concept that the antidepressant fluoxetine physically interacts with the TLR4–myeloid differentiation factor-2 complex at the same site as bacterial lipopolysaccharide (LPS). We also demonstrate reduced LPS-induced pro-inflammatory interleukin-6 and tumor necrosis factor alpha in human peripheral blood mononuclear cells preincubated with fluoxetine. Furthermore, we show that fluoxetine intercepts the LPS-induced decreases in intracellular acetylcholinesterase (AChE-S) and that AChE-S interacts with the nuclear factor kappa B (NFκB)-activating intracellular receptor for activated C kinase 1 (RACK1). This interaction may prevent NFκB activation by residual RACK1 and its interacting protein kinase PKCβII. Our findings attribute the anti-inflammatory properties of SSRI to surface membrane interference with leukocyte TLR4 activation accompanied by intracellular limitation of pathogen-inducible changes in AChE-S, RACK1, and PKCβII.


Journal of Cellular and Molecular Medicine | 2011

Butyrylcholinesterase interactions with amylin may protect pancreatic cells in metabolic syndrome.

Shani Shenhar-Tsarfaty; Tal Bruck; Estelle R. Bennett; Tsafrir Bravman; Einor Ben Aassayag; Nir Waiskopf; Ori Rogowski; Natan M. Bornstein; Shlomo Berliner; Hermona Soreq

The metabolic syndrome (MetS) is a risk factor for type 2 diabetes mellitus (T2DM). However, the mechanisms underlying the transition from MetS to T2DM are unknown. Our goal was to study the potential contribution of butyrylcholinesterase (BChE) to this process. We first determined the hydrolytic activity of BChE in serum from MetS, T2DM and healthy individuals. The ‘Kalow’ variant of BChE (BChE‐K), which has been proposed to be a risk factor for T2DM, was genotyped in the last two groups. Our results show that in MetS patients serum BChE activity is elevated compared to T2DM patients and healthy controls (P < 0.001). The BChE‐K genotype showed similar prevalence in T2DM and healthy individuals, excluding this genotype as a risk factor for T2DM. However, the activity differences remained unexplained. Previous results from our laboratory have shown BChE to attenuate the formation of β‐amyloid fibrils, and protect cultured neurons from their cytotoxicity. Therefore, we next studied the in vitro interactions between recombinant human butyrylcholinesterase and amylin by surface plasmon resonance, Thioflavine T fluorescence assay and cross‐linking, and used cultured pancreatic β cells to test protection by BChE from amylin cytotoxicity. We demonstrate that BChE interacts with amylin through its core domain and efficiently attenuates both amylin fibril and oligomer formation. Furthermore, application of BChE to cultured β cells protects them from amylin cytotoxicity. Taken together, our results suggest that MetS‐associated BChE increases could protect pancreatic β‐cells in vivo by decreasing the formation of toxic amylin oligomers.


ACS Chemical Neuroscience | 2011

Quantum dot labeling of butyrylcholinesterase maintains substrate and inhibitor interactions and cell adherence features.

Nir Waiskopf; Itzhak Shweky; Itai Lieberman; Uri Banin; Hermona Soreq

Butyrylcholinesterase (BChE) is the major acetylcholine hydrolyzing enzyme in peripheral mammalian systems. It can either reside in the circulation or adhere to cells and tissues and protect them from anticholinesterases, including insecticides and poisonous nerve gases. In humans, impaired cholinesterase functioning is causally involved in many pathologies, including Alzheimers and Parkinsons diseases, trait anxiety, and post stroke conditions. Recombinant cholinesterases have been developed for therapeutic use; therefore, it is important to follow their in vivo path, location, and interactions. Traditional labeling methods, such as fluorescent dyes and proteins, generally suffer from sensitivity to environmental conditions, from proximity to different molecules or special enzymes which can alter them, and from relatively fast photobleaching. In contrast, emerging development in synthesis and surface engineering of semiconductor nanocrystals enable their use to detect and follow molecules in biological milieus at high sensitivity and in real time. Therefore, we developed a platform for conjugating highly purified recombinant human BChE dimers (rhBChE) to CdSe/CdZnS quantum dots (QDs). We report the development and characterization of highly fluorescent aqueous soluble QD-rhBChE conjugates, present maintenance of hydrolytic activity, inhibitor sensitivity, and adherence to the membrane of cultured live cells of these conjugates, and outline their advantageous features for diverse biological applications.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Fear and C-reactive protein cosynergize annual pulse increases in healthy adults

Shani Shenhar-Tsarfaty; Nadav Yayon; Nir Waiskopf; Itzhak Shapira; Sharon Toker; David Zaltser; Shlomo Berliner; Ya'acov Ritov; Hermona Soreq

Significance Increased heart rate predicts all-cause mortality; however, the major causes for elevated basal heart rate values and annual changes in them have not been systematically studied, possibly because of the high individual variability involved. Our study addressed the question, “which physiological and psychological parameters determine basal pulse and its annual changes?,” in a cohort of 17,380 apparently healthy volunteers. This is, to the best of our knowledge, the first statistics-based search for the major interactions between physiological and psychological determinants of basal pulse and annual pulse changes; it indicates, perhaps not surprisingly, that consistent exposure to terror threats ignites fear-induced exacerbation of preexisting neuro-immune risks of all-cause mortality and proposes a set of risk-predicting parameters that may have translational value. Recent international terror outbreaks notably involve long-term mental health risks to the exposed population, but whether physical health risks are also anticipated has remained unknown. Here, we report fear of terror-induced annual increases in resting heart rate (pulse), a notable risk factor of all-cause mortality. Partial least squares analysis based on 325 measured parameters successfully predicted annual pulse increases, inverse to the expected age-related pulse decline, in approximately 4.1% of a cohort of 17,380 apparently healthy active Israeli adults. Nonbiased hierarchical regression analysis among 27 of those parameters identified pertinent fear of terror combined with the inflammatory biomarker C-reactive protein as prominent coregulators of the observed annual pulse increases. In comparison, basal pulse primarily depended on general physiological parameters and reduced cholinergic control over anxiety and inflammation, together indicating that consistent exposure to terror threats ignites fear-induced exacerbation of preexisting neuro-immune risks of all-cause mortality.


Nano Letters | 2017

Rapid Three-Dimensional Printing in Water Using Semiconductor–Metal Hybrid Nanoparticles as Photoinitiators

Amol Ashok Pawar; Shira Halivni; Nir Waiskopf; Yuval Ben-Shahar; Michal Soreni-Harari; Sarah Bergbreiter; Uri Banin; Shlomo Magdassi

Additive manufacturing processes enable fabrication of complex and functional three-dimensional (3D) objects ranging from engine parts to artificial organs. Photopolymerization, which is the most versatile technology enabling such processes through 3D printing, utilizes photoinitiators that break into radicals upon light absorption. We report on a new family of photoinitiators for 3D printing based on hybrid semiconductor-metal nanoparticles. Unlike conventional photoinitiators that are consumed upon irradiation, these particles form radicals through a photocatalytic process. Light absorption by the semiconductor nanorod is followed by charge separation and electron transfer to the metal tip, enabling redox reactions to form radicals in aerobic conditions. In particular, we demonstrate their use in 3D printing in water, where they simultaneously form hydroxyl radicals for the polymerization and consume dissolved oxygen that is a known inhibitor. We also demonstrate their potential for two-photon polymerization due to their giant two-photon absorption cross section.


ACS Nano | 2017

Delivery of Liposomal Quantum Dots via Monocytes for Imaging of Inflamed Tissue

Gil Aizik; Nir Waiskopf; Majd Agbaria; Yael Levi-Kalisman; Uri Banin; Gershon Golomb

Quantum dots (QDs), semiconductor nanocrystals, are fluorescent nanoparticles of growing interest as an imaging tool of a diseased tissue. However, a major concern is their biocompatibility, cytotoxicity, and fluorescence instability in biological milieu, impeding their use in biomedical applications, in general, and for inflammation imaging, in particular. In addition, for an efficient fluorescent signal at the desired tissue, and avoiding systemic biodistribution and possible toxicity, targeting is desired. We hypothesized that phagocytic cells of the innate immunity system (mainly circulating monocytes) can be exploited as transporters of specially designed liposomes containing QDs to the inflamed tissue. We developed a liposomal delivery system of QDs (LipQDs) characterized with high encapsulation yield, enhanced optical properties including far-red emission wavelength and fluorescent stability, high quantum yield, and protracted fluorescent decay lifetime. Treatment with LipQDs, rather than free QDs, exhibited high accumulation and retention following intravenous administration in carotid-injured rats (an inflammatory model). QD-monocyte colocalization was detected in the inflamed arterial segment only following treatment with LipQDs. No cytotoxicity was observed following LipQD treatment in cell cultures, and changes in liver enzymes and gross histopathological changes were not detected in mice and rats, respectively. Our results suggest that the LipQD formulation could be a promising strategy for imaging inflammation.

Collaboration


Dive into the Nir Waiskopf's collaboration.

Top Co-Authors

Avatar

Uri Banin

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Hermona Soreq

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Yuval Ben-Shahar

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Shani Shenhar-Tsarfaty

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Shlomo Berliner

Tel Aviv Sourasky Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shira Halivni

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Shlomo Magdassi

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Estelle R. Bennett

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge