Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nir Yosef is active.

Publication


Featured researches published by Nir Yosef.


Nature | 2013

Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells.

Markus Kleinewietfeld; Arndt Manzel; Jens Titze; Heda Kvakan; Nir Yosef; Ralf A. Linker; Dominik Müller; David A. Hafler

There has been a marked increase in the incidence of autoimmune diseases in the past half-century. Although the underlying genetic basis of this class of diseases has recently been elucidated, implicating predominantly immune-response genes, changes in environmental factors must ultimately be driving this increase. The newly identified population of interleukin (IL)-17-producing CD4+ helper T cells (TH17 cells) has a pivotal role in autoimmune diseases. Pathogenic IL-23-dependent TH17 cells have been shown to be critical for the development of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, and genetic risk factors associated with multiple sclerosis are related to the IL-23–TH17 pathway. However, little is known about the environmental factors that directly influence TH17 cells. Here we show that increased salt (sodium chloride, NaCl) concentrations found locally under physiological conditions in vivo markedly boost the induction of murine and human TH17 cells. High-salt conditions activate the p38/MAPK pathway involving nuclear factor of activated T cells 5 (NFAT5; also called TONEBP) and serum/glucocorticoid-regulated kinase 1 (SGK1) during cytokine-induced TH17 polarization. Gene silencing or chemical inhibition of p38/MAPK, NFAT5 or SGK1 abrogates the high-salt-induced TH17 cell development. The TH17 cells generated under high-salt conditions display a highly pathogenic and stable phenotype characterized by the upregulation of the pro-inflammatory cytokines GM-CSF, TNF-α and IL-2. Moreover, mice fed with a high-salt diet develop a more severe form of EAE, in line with augmented central nervous system infiltrating and peripherally induced antigen-specific TH17 cells. Thus, increased dietary salt intake might represent an environmental risk factor for the development of autoimmune diseases through the induction of pathogenic TH17 cells.


Nature | 2013

Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells

Alex K. Shalek; Rahul Satija; Xian Adiconis; Rona S. Gertner; Jellert T. Gaublomme; Raktima Raychowdhury; Schraga Schwartz; Nir Yosef; Christine M. Malboeuf; Diana Lu; John J. Trombetta; Dave Gennert; Andreas Gnirke; Alon Goren; Nir Hacohen; Joshua Z. Levin; Hongkun Park; Aviv Regev

Recent molecular studies have shown that, even when derived from a seemingly homogenous population, individual cells can exhibit substantial differences in gene expression, protein levels and phenotypic output, with important functional consequences. Existing studies of cellular heterogeneity, however, have typically measured only a few pre-selected RNAs or proteins simultaneously, because genomic profiling methods could not be applied to single cells until very recently. Here we use single-cell RNA sequencing to investigate heterogeneity in the response of mouse bone-marrow-derived dendritic cells (BMDCs) to lipopolysaccharide. We find extensive, and previously unobserved, bimodal variation in messenger RNA abundance and splicing patterns, which we validate by RNA-fluorescence in situ hybridization for select transcripts. In particular, hundreds of key immune genes are bimodally expressed across cells, surprisingly even for genes that are very highly expressed at the population average. Moreover, splicing patterns demonstrate previously unobserved levels of heterogeneity between cells. Some of the observed bimodality can be attributed to closely related, yet distinct, known maturity states of BMDCs; other portions reflect differences in the usage of key regulatory circuits. For example, we identify a module of 137 highly variable, yet co-regulated, antiviral response genes. Using cells from knockout mice, we show that variability in this module may be propagated through an interferon feedback circuit, involving the transcriptional regulators Stat2 and Irf7. Our study demonstrates the power and promise of single-cell genomics in uncovering functional diversity between cells and in deciphering cell states and circuits.


Nature Immunology | 2012

Induction and molecular signature of pathogenic TH17 cells

Youjin Lee; Amit Awasthi; Nir Yosef; Francisco J. Quintana; Sheng Xiao; Anneli Peters; Chuan Wu; Markus Kleinewietfeld; Sharon R. Kunder; David A. Hafler; Raymond A. Sobel; Aviv Regev; Vijay K. Kuchroo

Interleukin 17 (IL-17)-producing helper T cells (TH17 cells) are often present at the sites of tissue inflammation in autoimmune diseases, which has led to the conclusion that TH17 cells are main drivers of autoimmune tissue injury. However, not all TH17 cells are pathogenic; in fact, TH17 cells generated with transforming growth factor-β1 (TGF-β1) and IL-6 produce IL-17 but do not readily induce autoimmune disease without further exposure to IL-23. Here we found that the production of TGF-β3 by developing TH17 cells was dependent on IL-23, which together with IL-6 induced very pathogenic TH17 cells. Moreover, TGF-β3-induced TH17 cells were functionally and molecularly distinct from TGF-β1-induced TH17 cells and had a molecular signature that defined pathogenic effector TH17 cells in autoimmune disease.


Cell | 2011

Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis

Noa Novershtern; Aravind Subramanian; Lee N. Lawton; Raymond H. Mak; W. Nicholas Haining; Marie McConkey; Naomi Habib; Nir Yosef; Cindy Y. Chang; Tal Shay; Garrett M. Frampton; Adam Drake; Ilya B. Leskov; Björn Nilsson; Fred Preffer; David Dombkowski; John W. Evans; Ted Liefeld; John S. Smutko; Jianzhu Chen; Nir Friedman; Richard A. Young; Todd R. Golub; Aviv Regev; Benjamin L. Ebert

Though many individual transcription factors are known to regulate hematopoietic differentiation, major aspects of the global architecture of hematopoiesis remain unknown. Here, we profiled gene expression in 38 distinct purified populations of human hematopoietic cells and used probabilistic models of gene expression and analysis of cis-elements in gene promoters to decipher the general organization of their regulatory circuitry. We identified modules of highly coexpressed genes, some of which are restricted to a single lineage but most of which are expressed at variable levels across multiple lineages. We found densely interconnected cis-regulatory circuits and a large number of transcription factors that are differentially expressed across hematopoietic states. These findings suggest a more complex regulatory system for hematopoiesis than previously assumed.


Nature | 2013

Induction of pathogenic Th17 cells by inducible salt sensing kinase SGK1

Chuan Wu; Nir Yosef; Theresa Thalhamer; Chen Zhu; Sheng Xiao; Yasuhiro Kishi; Aviv Regev; Vijay K. Kuchroo

TH17 cells (interleukin-17 (IL-17)-producing helper T cells) are highly proinflammatory cells that are critical for clearing extracellular pathogens and for inducing multiple autoimmune diseases. IL-23 has a critical role in stabilizing and reinforcing the TH17 phenotype by increasing expression of IL-23 receptor (IL-23R) and endowing TH17 cells with pathogenic effector functions. However, the precise molecular mechanism by which IL-23 sustains the TH17 response and induces pathogenic effector functions has not been elucidated. Here we used transcriptional profiling of developing TH17 cells to construct a model of their signalling network and nominate major nodes that regulate TH17 development. We identified serum glucocorticoid kinase 1 (SGK1), a serine/threonine kinase, as an essential node downstream of IL-23 signalling. SGK1 is critical for regulating IL-23R expression and stabilizing the TH17 cell phenotype by deactivation of mouse Foxo1, a direct repressor of IL-23R expression. SGK1 has been shown to govern Na+ transport and salt (NaCl) homeostasis in other cells. We show here that a modest increase in salt concentration induces SGK1 expression, promotes IL-23R expression and enhances TH17 cell differentiation in vitro and in vivo, accelerating the development of autoimmunity. Loss of SGK1 abrogated Na+-mediated TH17 differentiation in an IL-23-dependent manner. These data demonstrate that SGK1 has a critical role in the induction of pathogenic TH17 cells and provide a molecular insight into a mechanism by which an environmental factor such as a high salt diet triggers TH17 development and promotes tissue inflammation.


Nature | 2014

Single cell RNA Seq reveals dynamic paracrine control of cellular variation

Alex K. Shalek; Rahul Satija; Joe Shuga; John J. Trombetta; Dave Gennert; Diana Lu; Peilin Chen; Rona S. Gertner; Jellert T. Gaublomme; Nir Yosef; Schraga Schwartz; Brian Fowler; Suzanne Weaver; Jing-jing Wang; Xiaohui Wang; Ruihua Ding; Raktima Raychowdhury; Nir Friedman; Nir Hacohen; Hongkun Park; Andrew May; Aviv Regev

High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript’s level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a ‘core’ module of antiviral genes is expressed very early by a few ‘precocious’ cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced ‘peaked’ inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses.


Nature | 2013

Dynamic regulatory network controlling Th17 cell differentiation

Nir Yosef; Alex K. Shalek; Jellert T. Gaublomme; Hulin Jin; Youjin Lee; Amit Awasthi; Chuan Wu; Katarzyna Karwacz; Sheng Xiao; Marsela Jorgolli; David Gennert; Rahul Satija; Arvind Shakya; Diana Y. Lu; John J. Trombetta; Meenu R. Pillai; Peter J. Ratcliffe; Mathew L. Coleman; Mark Bix; Dean Tantin; Hongkun Park; Vijay K. Kuchroo; Aviv Regev

Despite their importance, the molecular circuits that control the differentiation of naive T cells remain largely unknown. Recent studies that reconstructed regulatory networks in mammalian cells have focused on short-term responses and relied on perturbation-based approaches that cannot be readily applied to primary T cells. Here we combine transcriptional profiling at high temporal resolution, novel computational algorithms, and innovative nanowire-based perturbation tools to systematically derive and experimentally validate a model of the dynamic regulatory network that controls the differentiation of mouse TH17 cells, a proinflammatory T-cell subset that has been implicated in the pathogenesis of multiple autoimmune diseases. The TH17 transcriptional network consists of two self-reinforcing, but mutually antagonistic, modules, with 12 novel regulators, the coupled action of which may be essential for maintaining the balance between TH17 and other CD4+ T-cell subsets. Our study identifies and validates 39 regulatory factors, embeds them within a comprehensive temporal network and reveals its organizational principles; it also highlights novel drug targets for controlling TH17 cell differentiation.


Molecular Cell | 2012

A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals.

Manuel Garber; Nir Yosef; Alon Goren; Raktima Raychowdhury; Anne Thielke; Mitchell Guttman; James Robinson; Brian Minie; Nicolas Chevrier; Zohar Itzhaki; Ronnie Blecher-Gonen; Chamutal Bornstein; Daniela Amann-Zalcenstein; Assaf Weiner; Dennis Friedrich; James C. Meldrim; Oren Ram; Christine S. Cheng; Andreas Gnirke; Sheila Fisher; Nir Friedman; Bang Wong; Bradley E. Bernstein; Chad Nusbaum; Nir Hacohen; Aviv Regev; Ido Amit

Understanding the principles governing mammalian gene regulation has been hampered by the difficulty in measuring in vivo binding dynamics of large numbers of transcription factors (TF) to DNA. Here, we develop a high-throughput Chromatin ImmunoPrecipitation (HT-ChIP) method to systematically map protein-DNA interactions. HT-ChIP was applied to define the dynamics of DNA binding by 25 TFs and 4 chromatin marks at 4 time-points following pathogen stimulus of dendritic cells. Analyzing over 180,000 TF-DNA interactions we find that TFs vary substantially in their temporal binding landscapes. This data suggests a model for transcription regulation whereby TF networks are hierarchically organized into cell differentiation factors, factors that bind targets prior to stimulus to prime them for induction, and factors that regulate specific gene programs. Overlaying HT-ChIP data on gene-expression dynamics shows that many TF-DNA interactions are established prior to the stimuli, predominantly at immediate-early genes, and identified specific TF ensembles that coordinately regulate gene-induction.


Cell | 2011

Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells.

Oren Ram; Alon Goren; Ido Amit; Noam Shoresh; Nir Yosef; Jason Ernst; Manolis Kellis; Melissa Gymrek; Robbyn Issner; Michael J. Coyne; Timothy Durham; Xiaolan Zhang; Julie Donaghey; Charles B. Epstein; Aviv Regev; Bradley E. Bernstein

Hundreds of chromatin regulators (CRs) control chromatin structure and function by catalyzing and binding histone modifications, yet the rules governing these key processes remain obscure. Here, we present a systematic approach to infer CR function. We developed ChIP-string, a meso-scale assay that combines chromatin immunoprecipitation with a signature readout of 487 representative loci. We applied ChIP-string to screen 145 antibodies, thereby identifying effective reagents, which we used to map the genome-wide binding of 29 CRs in two cell types. We found that specific combinations of CRs colocalize in characteristic patterns at distinct chromatin environments, at genes of coherent functions, and at distal regulatory elements. When comparing between cell types, CRs redistribute to different loci but maintain their modular and combinatorial associations. Our work provides a multiplex method that substantially enhances the ability to monitor CR binding, presents a large resource of CR maps, and reveals common principles for combinatorial CR function.


American Journal of Human Genetics | 2007

Medical Sequencing at the Extremes of Human Body Mass

Nadav Ahituv; Nihan Kavaslar; Wendy Schackwitz; Anna Ustaszewska; Joel Martin; Sybil Hébert; Heather Doelle; Baran A. Ersoy; Gregory V. Kryukov; Steffen Schmidt; Nir Yosef; Eytan Ruppin; Roded Sharan; Christian Vaisse; Shamil R. Sunyaev; Robert Dent; Jonathan J. Cohen; Ruth McPherson; Len A. Pennacchio

Body weight is a quantitative trait with significant heritability in humans. To identify potential genetic contributors to this phenotype, we resequenced the coding exons and splice junctions of 58 genes in 379 obese and 378 lean individuals. Our 96-Mb survey included 21 genes associated with monogenic forms of obesity in humans or mice, as well as 37 genes that function in body weight-related pathways. We found that the monogenic obesity-associated gene group was enriched for rare nonsynonymous variants unique to the obese population compared with the lean population. In addition, computational analysis predicted a greater fraction of deleterious variants within the obese cohort. Together, these data suggest that multiple rare alleles contribute to obesity in the population and provide a medical sequencing-based approach to detect them.

Collaboration


Dive into the Nir Yosef's collaboration.

Top Co-Authors

Avatar

Aviv Regev

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chuan Wu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheng Xiao

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge