Nira Muttucumaru
Rothamsted Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nira Muttucumaru.
Journal of Experimental Botany | 2012
Nigel G. Halford; Tanya Y. Curtis; Nira Muttucumaru; Jennifer Postles; J. Stephen Elmore; Donald S. Mottram
Acrylamide, a chemical that is probably carcinogenic in humans and has neurological and reproductive effects, forms from free asparagine and reducing sugars during high-temperature cooking and processing of common foods. Potato and cereal products are major contributors to dietary exposure to acrylamide and while the food industry reacted rapidly to the discovery of acrylamide in some of the most popular foods, the issue remains a difficult one for many sectors. Efforts to reduce acrylamide formation would be greatly facilitated by the development of crop varieties with lower concentrations of free asparagine and/or reducing sugars, and of best agronomic practice to ensure that concentrations are kept as low as possible. This review describes how acrylamide is formed, the factors affecting free asparagine and sugar concentrations in crop plants, and the sometimes complex relationship between precursor concentration and acrylamide-forming potential. It covers some of the strategies being used to reduce free asparagine and sugar concentrations through genetic modification and other genetic techniques, such as the identification of quantitative trait loci. The link between acrylamide formation, flavour, and colour is discussed, as well as the difficulty of balancing the unknown risk of exposure to acrylamide in the levels that are present in foods with the well-established health benefits of some of the foods concerned.
Journal of Agricultural and Food Chemistry | 2009
Tanya Y. Curtis; Nira Muttucumaru; Peter R. Shewry; Martin A. J. Parry; Stephen J. Powers; J. S. Elmore; Donald S. Mottram; S. Hook; Nigel G. Halford
Acrylamide forms from free asparagine and reducing sugars during cooking, with asparagine concentration being the key parameter determining the formation in foods produced from wheat flour. In this study free amino acid concentrations were measured in the grain of varieties Spark and Rialto and four doubled haploid lines from a Spark x Rialto mapping population. The parental and doubled haploid lines had differing levels of total free amino acids and free asparagine in the grain, with one line consistently being lower than either parent for both of these factors. Sulfur deprivation led to huge increases in the concentrations of free asparagine and glutamine, and canonical variate analysis showed clear separation of the grain samples as a result of treatment (environment, E) and genotype (G) and provided evidence of G x E interactions. Low grain sulfur and high free asparagine concentration were closely associated with increased risk of acrylamide formation. G, E, and G x E effects were also evident in grain from six varieties of wheat grown at field locations around the United Kingdom in 2006 and 2007. The data indicate that progress in reducing the risk of acrylamide formation in processed wheat products could be made immediately through the selection and cultivation of low grain asparagine varieties and that further genetically driven improvements should be achievable. However, genotypes that are selected should also be tested under a range of environmental conditions.
Journal of Agricultural and Food Chemistry | 2012
Nigel G. Halford; Nira Muttucumaru; Stephen J. Powers; Peter N. Gillatt; Lee Hartley; J. Stephen Elmore; Donald S. Mottram
Acrylamide forms during cooking and processing predominately from the reaction of free asparagine and reducing sugars in the Maillard reaction. The identification of low free asparagine and reducing sugar varieties of crops is therefore an important target. In this study, nine varieties of potato (French fry varieties Maris Piper (from two suppliers), Pentland Dell, King Edward, Daisy, and Markies; and chipping varieties Lady Claire, Lady Rosetta, Saturna, and Hermes) grown in the United Kingdom in 2009 were analyzed at monthly intervals through storage from November 2009 to July 2010. Acrylamide formation was measured in heated flour and chips fried in oil. Analysis of variance revealed significant interactions between varieties nested within type (French fry and chipping) and storage time for most free amino acids, glucose, fructose, and acrylamide formation. Acrylamide formed in chips correlated significantly with acrylamide formed in flour and with chip color. There were significant correlations between glucose or total reducing sugar concentration and acrylamide formation in both variety types, but with fructose the correlation was much stronger for chipping than for French fry varieties. Conversely, there were significant correlations with acrylamide formation for both total free amino acid and free asparagine concentration in the French fry but not chipping varieties. The study showed the potential of variety selection for preventing unacceptable levels of acrylamide formation in potato products and the variety-dependent effect of long-term storage on acrylamide risk. It also highlighted the complex relationship between precursor concentration and acrylamide risk in potatoes.
Journal of Experimental Botany | 2012
Patricia Coello; Emi Hirano; Sandra J. Hey; Nira Muttucumaru; Eleazar Martínez-Barajas; Martin A. J. Parry; Nigel G. Halford
Sucrose nonfermenting-1 (SNF1)-related protein kinases (SnRKs) form a major family of signalling proteins in plants and have been associated with metabolic regulation and stress responses. They comprise three subfamilies: SnRK1, SnRK2, and SnRK3. SnRK1 plays a major role in the regulation of carbon metabolism and energy status, while SnRKs 2 and 3 have been implicated in stress and abscisic acid (ABA)-mediated signalling pathways. The burgeoning and divergence of this family of protein kinases in plants may have occurred to enable cross-talk between metabolic and stress signalling, and ABA-response-element-binding proteins (AREBPs), a family of transcription factors, have been shown to be substrates for members of all three subfamilies. In this study, levels of SnRK1 protein were shown to decline dramatically in wheat roots in response to ABA treatment, although the amount of phosphorylated (active) SnRK1 remained constant. Multiple SnRK2-type protein kinases were detectable in the root extracts and showed differential responses to ABA treatment. They included a 42 kDa protein that appeared to reduce in response to 3 h of ABA treatment but to recover after longer treatment. There was a clear increase in phosphorylation of this SnRK2 in response to the ABA treatment. Fractions containing this 42 kDa SnRK2 were shown to phosphorylate synthetic peptides with amino acid sequences based on those of conserved phosphorylation sites in AREBPs. The activity increased 8-fold with the addition of calcium chloride, indicating that it is calcium-dependent. The activity assigned to the 42 kDa SnRK2 also phosphorylated a heterologously expressed wheat AREBP.
Annals of Applied Biology | 2014
Nira Muttucumaru; Stephen J. Powers; J. S. Elmore; Adrian Briddon; Donald S. Mottram; Nigel G. Halford
Free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results not only in the formation of colour, aroma and flavour compounds, but also undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the reaction is asparagine. In this study, tubers of 13 varieties of potato (Solanum tuberosum), which had been produced in a field trial in 2010 and sampled immediately after harvest or after storage for 6 months, were analysed to show the relationship between the concentrations of free asparagine, other free amino acids, sugars and acrylamide-forming potential. The varieties comprised five that are normally used for crisping, seven that are used for French fry production and one that is used for boiling. Acrylamide formation was measured in heated flour, and correlated with glucose and fructose concentration. In French fry varieties, which contain higher concentrations of sugars, acrylamide formation also correlated with free asparagine concentration, demonstrating the complex relationship between precursor concentration and acrylamide-forming potential in potato. Storage of the potatoes for 6 months at 9°C had a significant, variety-dependent impact on sugar and amino acid concentrations and acrylamide-forming potential.
Journal of Agricultural and Food Chemistry | 2013
Nira Muttucumaru; Stephen J. Powers; J. Stephen Elmore; Donald S. Mottram; Nigel G. Halford
Nitrogen (N) fertilizer is used routinely in potato (Solanum tuberosum) cultivation to maximize yield. However, it also affects sugar and free amino acid concentrations in potato tubers, and this has potential implications for food quality and safety because free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results in the formation of color, aroma, and flavor compounds, but also some undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the final stages of the reaction is asparagine. Another mineral, sulfur (S), also has profound effects on tuber composition. In this study, 13 varieties of potato were grown in a field trial in 2010 and treated with different combinations of N and S. Potatoes were analyzed immediately after harvest to show the effect of N and S fertilization on concentrations of free asparagine, other free amino acids, sugars, and acrylamide-forming potential. The study showed that N application can affect acrylamide-forming potential in potatoes but that the effect is type- (French fry, chipping, and boiling) and variety-dependent, with most varieties showing an increase in acrylamide formation in response to increased N but two showing a decrease. S application reduced glucose concentrations and mitigated the effect of high N application on the acrylamide-forming potential of some of the French fry-type potatoes.
Food Chemistry | 2015
J. Stephen Elmore; Adrian Briddon; Andrew T. Dodson; Nira Muttucumaru; Nigel G. Halford; Donald S. Mottram
Highlights • Twenty varieties of field-grown potato were stored for 2 months and 6 months at 8 °C.• Acrylamide contents were measured in crisps prepared from all varieties at both storage times.• The longer storage period did not affect acrylamide formation significantly.• Correlations between acrylamide, its precursors and crisp colour are described and discussed.
Plant Biotechnology Journal | 2012
Edward H. Byrne; Ian M. Prosser; Nira Muttucumaru; Tanya Y. Curtis; Astrid Wingler; Stephen J. Powers; Nigel G. Halford
A key point of regulation of protein synthesis and amino acid homoeostasis in eukaryotes is the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α) by protein kinase general control nonderepressible (GCN)-2. In this study, a GCN2-type PCR product (TaGCN2) was amplified from wheat (Triticum aestivum) RNA, while a wheat eIF2α homologue was identified in wheat genome data and found to contain a conserved target site for phosphorylation by GCN2. TaGCN2 overexpression in transgenic wheat resulted in significant decreases in total free amino acid concentration in the grain, with free asparagine concentration in particular being much lower than in controls. There were significant increases in the expression of eIF2α and protein phosphatase PP2A, as well as a nitrate reductase gene and genes encoding phosphoserine phosphatase and dihydrodipicolinate synthase, while the expression of an asparagine synthetase (AS1) gene and genes encoding cystathionine gamma-synthase and sulphur-deficiency-induced-1 all decreased significantly. Sulphur deficiency-induced activation of these genes occurred in wild-type plants but not in TaGCN2 overexpressing lines. Under sulphur deprivation, the expression of genes encoding aspartate kinase/homoserine dehydrogenase and 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase was also lower than in controls. The study demonstrates that TaGCN2 plays an important role in the regulation of genes encoding enzymes of amino acid biosynthesis in wheat and is the first to implicate GCN2-type protein kinases so clearly in sulphur signalling in any organism. It shows that manipulation of TaGCN2 gene expression could be used to reduce free asparagine accumulation in wheat grain and the risk of acrylamide formation in wheat products.
Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2007
Nigel G. Halford; Nira Muttucumaru; Tanya Y. Curtis; Martin A. J. Parry
Progress in developing genetic and agronomic approaches for reducing the levels of the principal precursors of acrylamide, asparagine and sugars in crop plants is reviewed. The factors that affect asparagine and sugar accumulation, particularly in cereal seeds and potato tubers, are described. Asparagine levels appear to be the key parameter in determining acrylamide formation in processed wheat flour and agronomic strategies for reducing asparagine accumulation in wheat grain are reviewed. Sulphur availability has been shown to be particularly important, with sulphur deprivation causing a dramatic increase in grain asparagine levels and acrylamide risk. Nitrogen availability is also a factor, with increasing nitrogen availability causing grain asparagine levels and acrylamide risk to rise. In potato, attention has been focused on sugars, and there has been some success in reducing sugar accumulation in stored potatoes by genetic modification, with a resultant reduction in acrylamide formation. However, the wisdom or otherwise of this dogma is discussed. Other possible genetic targets for manipulation or development as genetic markers in breeding programmes are reviewed. Plant breeders and farmers are encouraged to exploit the varietal differences in acrylamide risk that have already been identified and to develop good agronomic practice to reduce the levels of acrylamide precursors in cereals and potato.
Journal of Agricultural and Food Chemistry | 2008
J. Stephen Elmore; Jane K. Parker; Nigel G. Halford; Nira Muttucumaru; Donald S. Mottram
Wheat flour from plants deficient in sulfur has been shown to contain substantially higher levels of free amino acids, particularly asparagine and glutamine, than flour from wheat grown where sulfur nutrition was sufficient. Elevated levels of asparagine resulted in acrylamide levels up to 6 times higher in sulfur-deprived wheat flour, compared with sulfur-sufficient wheat flour, for three varieties of winter wheat. The volatile compounds from flour, heated at 180 degrees C for 20 min, have been compared for these three varieties of wheat grown with and without sulfur fertilizer. Approximately 50 compounds were quantified in the headspace extracts of the heated flour; over 30 compounds were affected by sulfur fertilization, and 15 compounds were affected by variety. Unsaturated aldehydes formed from aldol condensations, Strecker aldehydes, alkylpyrazines, and low molecular weight alkylfurans were found at higher concentrations in the sulfur-deficient flour, whereas low molecular weight pyrroles and thiophenes and sugar breakdown products were found at higher concentrations in the sulfur-sufficient flour. The reasons for these differences and the relationship between acrylamide formation and aroma volatile formation are discussed.