Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nirmala Rachel James is active.

Publication


Featured researches published by Nirmala Rachel James.


Biomaterials | 2003

Surface thiocyanation of plasticized poly(vinyl chloride) and its effect on bacterial adhesion.

Nirmala Rachel James; A. Jayakrishnan

Thiocyanates, especially bis-alkylthiocyanates are highly effective in killing a number of bacterial strains and are reported to be potent biocides at ppm concentrations. In order to examine whether a covalently bound and immobilized thiocyanate group on a biomaterial surface is still effective as a bactericide, plasticized poly(vinyl chloride) (PVC) was thiocyanated using sodium thiocyanate in the presence of a phase transfer catalyst in aqueous media leading to the nucleophilic substitution of chlorine by thiocyanate on the PVC surface. Thiocyanation imparted hydrophilicity to the surface in comparison with bare PVC. Control and thiocyanated PVC surfaces were exposed to two strains of bacteria commonly implicated in device-associated infections, such as Staphylococcus aureus and Staphylococcus epidermidis. Bacterial adhesion and colonization was quantitated by counting the viable organisms on the adhered surface as well as by optical and scanning electron microscopy. Significantly reduced retention of S. epidermidis and S. aureus was seen on the thiocyanated PVC surface. Immobilized thiocyanate was non-cytotoxic in a preliminary cell culture assay. The study thus showed that even though an immobilized thiocyanate moiety on the polymer surface was not as effective as a bactericide unlike soluble thiocyanates, it prevented the retention and colonization of the bacteria to a considerable extent.


Carbohydrate Polymers | 2014

Modified dextran cross-linked electrospun gelatin nanofibres for biomedical applications.

K. Jalaja; P.R. Anil Kumar; Tuli Dey; Subhas C. Kundu; Nirmala Rachel James

Electrospun gelatin nanofibres attract attention of bioengineering arena because of its excellent biocompatibility and structural resemblance with native extracellular matrix. In this study, we have developed gelatin nanofibres using an innovative cross-linking approach to minimize cytotoxic effects. Gelatin was dissolved in water:acetic acid (8:2, v/v) solution and electrospun to form nanofibres with diameter in the range of 156 ± 30 nm. The nanofibres were cross-linked with a modified polysaccharide, namely, dextran aldehyde (DA). Cross-linking with DA could be achieved without compromising the fibrous architecture. DA cross-linked gelatin nanofibres maintained the fibrous morphology in aqueous medium. These mats exhibit improved mechanical properties and gradual degradation behaviour. The nanofibres were evaluated for cytotoxicity, cell adhesion, viability, morphology and proliferation using L-929 fibroblast cells. The results confirmed that DA cross-linked mats were non cytotoxic towards L-929 cells with good cell adhesion, spreading and proliferation.


Carbohydrate Polymers | 2015

Gum arabic-curcumin conjugate micelles with enhanced loading for curcumin delivery to hepatocarcinoma cells.

P.R. Sarika; Nirmala Rachel James; P.R. Anil Kumar; Deepa K. Raj; T. V. Kumary

Curcumin is conjugated to gum arabic, a highly water soluble polysaccharide to enhance the solubility and stability of curcumin. Conjugation of curcumin to gum arabic is confirmed by (1)H NMR, fluorescence and UV spectroscopy studies. The conjugate self assembles to spherical nano-micelles (270 ± 5 nm) spontaneously, when dispersed in aqueous medium. Spherical morphology of the self assembled conjugate is evidenced by field emission scanning electron microscopy and transmission electron microscopy. The self assembly of the amphiphilic conjugate into micelle in aqueous medium significantly enhances the solubility (900 fold of that of free curcumin) and stability of curcumin in physiological pH. The anticancer activity of the conjugate micelles is found to be higher in human hepatocellular carcinoma (HepG2) cells than in human breast carcinoma (MCF-7) cells. The conjugate exhibits enhanced accumulation and toxicity in HepG2 cells due to the targeting efficiency of the galactose groups present in gum arabic.


Carbohydrate Polymers | 2016

Potential of electrospun core–shell structured gelatin–chitosan nanofibers for biomedical applications

K. Jalaja; Deboki Naskar; Subhas C. Kundu; Nirmala Rachel James

Coaxial electrospinning is an upcoming technology that has emerged from the conventional electrospinning process in order to realize the production of nanofibers of less spinnable materials with potential applications. The present work focuses on the production of chitosan nanofibers in a benign route, using natural polymer as core template, mild solvent system and naturally derived cross-linkers. Nanofibers with chitosan as shell are fabricated by coaxial electrospinning with highly spinnable gelatin as core using aqueous acetic acid as solvent. For maintaining the biocompatibility and structural integrity of the core-shell nanofibers, cross-linking is carried out using naturally derived cross-linking agents, dextran aldehyde and sucrose aldehyde. The biological evaluation of gelatin/chitosan mat is carried out using human osteoblast like cells. The results show that the cross-linked core-shell nanofibers are excellent matrices for cell adhesion and proliferation.


Carbohydrate Polymers | 2015

Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization

P.R. Sarika; P.R. Anil Kumar; Deepa K. Raj; Nirmala Rachel James

Nanogels were developed from alginic aldehyde and gelatin by an inverse miniemulsion technique. Stable inverse miniemulsions were prepared by sonication of noncontinuous aqueous phase (mixture of alginic aldehyde and gelatin) in a continuous organic phase (Span 20 dissolved in cyclohexane). Cross-linking occurred between alginic aldehyde (AA) and gelatin (gel) in the presence of borax by Schiffs base reaction during the formation of inverse miniemulsion. The effects of surfactant (Span 20) concentration, volume of the aqueous phase and AA/gel weight ratio on the size of the alginic aldehyde-gelatin (AA-gel) nanoparticles were studied. Nanogels were characterized by DLS, FT-IR spectroscopy, TGA, SEM and TEM. DLS, TEM and SEM studies demonstrated nanosize and spherical morphology of the nanogels. Hemocompatibility and in vitro cytocompatibility analyses of the nanogels proved their nontoxicity. The results indicated the potential of the present nanogel system as a candidate for drug- and gene-delivery applications.


Materials Science and Engineering: C | 2016

Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde-gelatin nanogels.

P.R. Sarika; Nirmala Rachel James; P.R. Anil Kumar; Deepa K. Raj

Curcumin, a natural polyphenol exhibits chemopreventive and chemotherapeutic activities towards cancer. In order to improve the bioavailability and therapeutic efficacy, curcumin is encapsulated in alginate aldehyde-gelatin (Alg Ald-Gel) nanogels. Alginate aldehyde-gelatin nanogels are prepared by inverse miniemulsion technique. Physicochemical properties of the curcumin loaded nanogels are evaluated by, Dynamic light scattering (DLS), NMR spectroscopy and Scanning electron microscopy (SEM). Curcumin loaded nanogels show hydrodynamic diameter of 431±8nm and a zeta potential of -36±4mV. The prepared nanogels exhibit an encapsulation efficiency of 72±2%. In vitro drug release studies show a controlled release of curcumin from nanogels over a period of 48h. Hemocompatibility and cytocompatibility of the nanogels are evaluated. Bare nanogels are cytocompatible and curcumin loaded nanogels induce anticancer activity towards MCF-7 cells. In vitro cellular uptake of the curcumin loaded nanogels using confocal laser scanning microscopy (CLSM) confirms the uptake of nanogels in MCF-7 cells. Hence, the developed nanogel system can be a suitable candidate for curcumin delivery to cancer cells.


Carbohydrate Polymers | 2016

Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery.

P.R. Sarika; Nirmala Rachel James

Self assembled hybrid polyelectrolyte complex (PEC) nanoparticles are prepared from cationically modified gelatin and sodium alginate (Alg) by electrostatic complexation between the polymers. Cationised gelatin (CG) is prepared by the reaction of gelatin with ethylenediamine. Structural changes in gelatin, after modification with ethylenediamine are investigated by XRD and (1)H NMR spectroscopy. Hybrid polyelectrolyte nanoparticles, labeled CG/Alg, are prepared by simple mixing of CG and Alg. CG/Alg complex shows spherical morphology as confirmed by scanning electron microscopy. These polyelectrolyte complex nanoparticles can be used for the encapsulation and delivery of natural antioxidant curcumin to carcinoma cells. CG/Alg nanoparticles show curcumin encapsulation efficiency of 69% and exhibit sustained release of curcumin in vitro. Anticancer activity of curcumin loaded CG/Alg nanoparticles towards MCF-7 cells is disclosed by MTT assay. Intracellular uptake of the drug encapsulated nanoparticles is confirmed by fluorescent imaging.


International Journal of Biological Macromolecules | 2015

Electrospun gelatin nanofibers: A facile cross-linking approach using oxidized sucrose

K. Jalaja; Nirmala Rachel James

Gelatin nanofibers were fabricated via electrospinning with minimal toxicity from solvents and cross-linking agents. Electrospinning was carried out using a solvent system based on water and acetic acid (8:2, v/v). Acetic acid concentration was kept as minimum as possible to reduce the toxic effects. Electrospun gelatin nanofibers were cross-linked with oxidized sucrose. Sucrose was oxidized by periodate oxidation to introduce aldehyde functionality. Cross-linking with oxidized sucrose could be achieved without compromising the nanofibrous architecture. Cross-linked gelatin nanofibers maintained the fibrous morphology even after keeping in contact with aqueous medium. The morphology of the cross-linked nanofibrous mats was examined by scanning electron microscopy (SEM). Oxidized sucrose cross-linked gelatin nanofibers exhibited improved thermal and mechanical properties. The nanofibrous mats were evaluated for cytotoxicity and cell viability using L-929 fibroblast cells. The results confirmed that oxidized sucrose cross-linked gelatin nanofibers were non-cytotoxic towards L-929 cells with good cell viability.


Materials Science and Engineering: C | 2014

Modified gum arabic cross-linked gelatin scaffold for biomedical applications

P.R. Sarika; Kuriakose Cinthya; A. Jayakrishnan; P.R. Anilkumar; Nirmala Rachel James

The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiffs base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture.


International Journal of Biological Macromolecules | 2015

Preparation and characterisation of gelatin–gum arabic aldehyde nanogels via inverse miniemulsion technique

P.R. Sarika; Nirmala Rachel James

Gelatin-gum arabic aldehyde nanogels designed by a nanoreactor concept using inverse miniemulsion technique were reported. Stable separate miniemulsions were prepared from gelatin (Gel) and gum arabic aldehyde (GAA). These emulsions were intermixed under sonication to obtain cross-linked nanogels. During fusion, cross-linking occurred between aldehyde groups of GAA and amino groups of gelatin. The concentration of the surfactant and weight fraction of water in the inverse miniemulsion was optimised so as to yield nanogels with controlled particle size. Properties of the nanogels were studied by FT-IR spectroscopy, particle size analysis and XRD. Surface morphology of the nanogels was established by Scanning Electron Microscopy (SEM). SEM and particle size analysis confirmed that nanogels possess spherical morphology with an average diameter of 151 ± 6 nm. Hemolysis property of the nanogels was examined and the results indicated that the nanogels were hemocompatible. The in vitro cytotoxicity of the nanogels towards MCF-7 cells was evaluated by MTT assay and the nanogels showed nontoxic behaviour towards the cells. All these studies confirm that these nanogels are potential candidates in applications such as drug and gene delivery.

Collaboration


Dive into the Nirmala Rachel James's collaboration.

Top Co-Authors

Avatar

A. Jayakrishnan

Indian Institute of Technology Madras

View shared research outputs
Top Co-Authors

Avatar

P.R. Sarika

Indian Institute of Space Science and Technology

View shared research outputs
Top Co-Authors

Avatar

K. Jalaja

Indian Institute of Space Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Subhas C. Kundu

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Deboki Naskar

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roy Joseph

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Biji Balakrishnan

Indian Institute of Technology Bombay

View shared research outputs
Top Co-Authors

Avatar

Kuruvilla Joseph

Indian Institute of Space Science and Technology

View shared research outputs
Top Co-Authors

Avatar

N.Gomati

Indian Institute of Space Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge